This guide explains how to use and manage X.25 Mail and how to use and manage a host–based PAD to connect to a remote system. It also describes how to manage the X.29 communication links used for both of these functions. In addition, this guide explains how to use OpenVMS DCL SET TERMINAL/X29 commands to manage remote PADs.

Operating System: OpenVMS I64 Version 8.2 and 8.2-1
OpenVMS Alpha Version 8.2

Software Version: HP X.25 for OpenVMS
Version 2.0

Hewlett-Packard Company
Palo Alto, California
Contents

Preface .. ix

Part I Using and Managing X.25 Mail

1 Using X.25 Mail

1.1 Sending and Receiving Mail 1–1
1.2 Using Logical Names for Addresses 1–2
1.2.1 Creating Personal Logical Names 1–3

2 Managing X.25 Mail

2.1 Introduction .. 2–1
2.2 Templates .. 2–1
2.3 Filters .. 2–2
2.4 Defining Logical Names 2–2
2.4.1 Defining System–Wide Logical Names 2–3
2.4.1.1 Logical Names for Outgoing Mail 2–3
2.4.1.2 Logical Names for Incoming Mail 2–3
2.5 Security and X.25 Mail 2–4
2.5.1 Security and Poor Man’s Routing 2–4
2.5.2 Preventing Poor Man’s Routing 2–4
2.5.2.1 Preventing Indiscriminate Use of OpenVMS Mail 2–4
2.5.2.2 Preventing Indiscriminate Use of X.25 Mail 2–6

Part II Using X.29

3 Using an X.29 Terminal to Connect to a Remote System

3.1 Connecting to a Remote System 3–1
3.1.1 Including SET HOST/X29 in a Batch Job 3–2
3.2 Disconnecting from a Remote System 3–2
3.3 Controlling Your Connection to the Remote DTE 3–3
3.3.1 Setting PAD Parameters Using the SET HOST/X29 Command 3–3
3.3.1.1 Files and Command Qualifiers Used to Set PAD Parameters 3–4
3.3.2 Creating the PAD Initialization File and PAD Parameter Profiles 3–6
3.3.2.1 Creating a PAD Initialization File 3–6
3.3.2.2 Creating a PAD Profile File 3–6
3.4 Specifying the Type of Log File for Your Session 3–7
4 Controlling the Connection to the Remote DTE

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Setting the Characteristics of the Host–Based PAD</td>
<td>4–1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Setting PAD Parameters</td>
<td>4–1</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Setting Individual Parameters</td>
<td>4–1</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Using a PAD Parameter Profile</td>
<td>4–2</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>Specifying PAD Profiles and Individual Parameters</td>
<td>4–2</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Setting the Escape Character</td>
<td>4–2</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Specifying the Escape Character</td>
<td>4–2</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Setting the Default Escape Character</td>
<td>4–3</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Setting a Break Character</td>
<td>4–3</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Using the PAD in OpenVMS Mode</td>
<td>4–3</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Controlling Access to the Command Language</td>
<td>4–4</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Logging Your Session</td>
<td>4–4</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Displaying Call Statistics</td>
<td>4–4</td>
</tr>
<tr>
<td>4.2</td>
<td>Setting the Characteristics of the Connection to the Remote DTE</td>
<td>4–4</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Using a Local Subaddress</td>
<td>4–5</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Connecting to a DTE Within a Closed User Group</td>
<td>4–5</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Sending User Data</td>
<td>4–5</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Using Fast Select</td>
<td>4–5</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Specifying Packet Size and Window Size</td>
<td>4–5</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Using Reverse Charging</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Requesting a Throughput Class</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Specifying Local Facilities</td>
<td>4–6</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Using a Nonstandard X.29 Protocol Identifier</td>
<td>4–6</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of the SET HOST/X29 Command Qualifiers</td>
<td>4–7</td>
</tr>
</tbody>
</table>

5 Using PAD Commands to Control the Host–Based PAD

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Entering PAD Command Mode</td>
<td>5–2</td>
</tr>
<tr>
<td>5.2</td>
<td>Leaving PAD Command Mode</td>
<td>5–2</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Returning to Your SET HOST/X29 Session</td>
<td>5–2</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Clearing Your Call</td>
<td>5–2</td>
</tr>
<tr>
<td>5.3</td>
<td>Controlling a PAD Session</td>
<td>5–2</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Creating a Subprocess</td>
<td>5–2</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Attaching to a Specified Process</td>
<td>5–4</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Defining and Deleting Keys</td>
<td>5–4</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Defining a Key</td>
<td>5–4</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Deleting a Key Definition</td>
<td>5–5</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Sending an Interrupt to the Remote DTE</td>
<td>5–5</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Sending a Reset to the Remote DTE</td>
<td>5–6</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Executing a File of PAD Commands</td>
<td>5–6</td>
</tr>
<tr>
<td>5.4</td>
<td>Changing the PAD Characteristics</td>
<td>5–6</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Changing PAD Parameters</td>
<td>5–6</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>Changing the Values of Individual Parameters</td>
<td>5–7</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>Using a PAD Parameter Profile</td>
<td>5–7</td>
</tr>
<tr>
<td>5.4.1.3</td>
<td>Using PAD Profiles and Resetting Individual Parameters</td>
<td>5–8</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Changing the Escape Character</td>
<td>5–8</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Specifying the Escape Character</td>
<td>5–8</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Changing the Default Escape Character</td>
<td>5–8</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Setting or Changing the Break Character</td>
<td>5–9</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Using the PAD in OpenVMS Mode</td>
<td>5–9</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Starting and Stopping a Log of Your SET HOST/X29 Session</td>
<td>5–9</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Changing the PAD Prompt</td>
<td>5–10</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Sending a File to the Remote DTE</td>
<td>5–10</td>
</tr>
</tbody>
</table>
Part III Managing X.29 Communications

8 Overview of Managing X.29

9 Setting Default X.29 Terminal Characteristics
10 Changing Default X.29 Terminal Characteristics

10.1 Using the SET TERMINAL/X29 Command to Control X.29 Terminal Characteristics .. 10–1
10.1.1 Changing Individual Parameters .. 10–1
10.1.2 Changing the Hold Timer .. 10–2
10.1.3 Controlling the Response of the NV Device to Break and Interrupt Messages .. 10–2
10.2 Using PAD Parameter Templates to Control the NV Device 10–3
10.2.1 Specifying PAD Parameter Templates Using SET TERMINAL/X29 .. 10–3
10.2.2 Specifying PAD Parameter Templates Using the User Template Command Procedure .. 10–4

11 Displaying Terminal Characteristics

11.1 Using the SHOW TERMINAL/X29 Command .. 11–1
11.2 Displaying PAD Parameters and Their Values .. 11–3
11.3 Displaying PAD Parameters and Their Values in Numeric Form 11–3
11.4 Displaying Parameter Templates and Terminal Characteristics 11–4

12 Spooling an X.29 Terminal

12.1 Setting Up an X.29 Terminal as a Spooled Device 12–1
12.2 Command Procedure to Spool the Current Terminal 12–2
12.3 Command Procedure to Set Up the NV Device as a Terminal Queue 12–3

A PAD Parameters

A.1 Parameter 1 (ESCAPE_CHARACTER) .. A–2
A.2 Parameter 2 (ECHO) .. A–2
A.3 Parameter 3 (FORWARDING_CHARACTERS) A–2
A.4 Parameter 4 (TIMEOUT) .. A–2
A.5 Parameter 5 (HOSTSYNC) .. A–3
A.6 Parameter 6 (MESSAGES) .. A–3
A.7 Parameter 7 (BREAK) .. A–3
A.8 Parameter 8 (DISCARD_OUTPUT) .. A–3
A.9 Parameter 9 (CRFILL) ... A–4
A.10 Parameter 10 (WRAP) ... A–4
A.11 Parameter 11 (SPEED) .. A–4
A.12 Parameter 12 (TTSYNC) .. A–5
A.13 Parameter 13 (NEW_LINE) ... A–5
A.14 Parameter 14 (LFFILL) .. A–6
A.15 Parameter 15 (EDIT) .. A–6
A.16 Parameter 16 (DELETE) .. A–6
A.17 Parameter 17 (LINE_DELETE) ... A–6
A.18 Parameter 18 (REDISPLAY_LINE) A–7
A.19 Parameter 19 (DISPLAY_EDIT) A–7
A.20 Parameter 20 (RESTRICT_ECHO) A–7
A.21 Parameter 21 (PARITY) .. A–7
A.22 Parameter 22 (PAGE_WAIT) .. A–8
B Host–Based PAD Initial Profile

Index

Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>X.25 Security and MAIL</td>
<td>2–5</td>
</tr>
<tr>
<td>3–1</td>
<td>Connecting to a Remote System</td>
<td>3–1</td>
</tr>
<tr>
<td>3–2</td>
<td>Sequence in which PAD Parameters are Set After Issuing a SET HOST/X29 Command</td>
<td>3–5</td>
</tr>
<tr>
<td>5–1</td>
<td>Using PAD Commands to Change Characteristics of the Host–Based PAD</td>
<td>5–1</td>
</tr>
<tr>
<td>8–1</td>
<td>An X.29 Communications Link</td>
<td>8–1</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X.25 Terminology</td>
<td>xiii</td>
</tr>
<tr>
<td>2</td>
<td>X.25 for OpenVMS Client/Server Terminology</td>
<td>xiii</td>
</tr>
<tr>
<td>4–1</td>
<td>SET HOST/X29 Qualifiers Which Control the PAD</td>
<td>4–7</td>
</tr>
<tr>
<td>4–2</td>
<td>SET HOST/X29 Qualifiers Which Control the Connection</td>
<td>4–8</td>
</tr>
<tr>
<td>5–1</td>
<td>Commands Used to Control a PAD Session</td>
<td>5–13</td>
</tr>
<tr>
<td>5–2</td>
<td>Commands Used to Change the PAD Characteristics</td>
<td>5–15</td>
</tr>
<tr>
<td>5–3</td>
<td>Commands Used to Examine the PAD Characteristics</td>
<td>5–16</td>
</tr>
<tr>
<td>7–1</td>
<td>SET TERMINAL/X29 Command Qualifiers</td>
<td>7–5</td>
</tr>
<tr>
<td>7–2</td>
<td>SHOW TERMINAL/X29 Command Qualifiers</td>
<td>7–5</td>
</tr>
<tr>
<td>8–1</td>
<td>PAD Parameter Template Defaults</td>
<td>8–3</td>
</tr>
<tr>
<td>9–1</td>
<td>Logical Names and Example Settings</td>
<td>9–1</td>
</tr>
<tr>
<td>9–2</td>
<td>Parameter Attributes</td>
<td>9–2</td>
</tr>
<tr>
<td>9–3</td>
<td>X25$X29_SYSTEM_TEMPLATE.COM Parameter Values</td>
<td>9–4</td>
</tr>
<tr>
<td>11–1</td>
<td>PAD Parameter Settings</td>
<td>11–2</td>
</tr>
<tr>
<td>A–1</td>
<td>PAD Parameter Values Required by the NV Device</td>
<td>A–1</td>
</tr>
<tr>
<td>B–1</td>
<td>Host–Based PAD Initial Profile</td>
<td>B–1</td>
</tr>
</tbody>
</table>
Preface

This guide explains how to:

- Use and manage X.25 Mail
- Use a host-based PAD to connect to a remote system
- Use an X.29 terminal to connect to a remote OpenVMS system
- Manage X.29 communication links

The information in this guide applies to the X.25 functionality provided by HP X.25 for OpenVMS and HP DECnet–Plus for OpenVMS VAX. Note that the X.25 functionality in DECnet–Plus for OpenVMS VAX was formerly provided by VAX P.S.I. software.

Throughout this guide, the X.25 functionality provided by both HP X.25 for OpenVMS and HP DECnet–Plus for OpenVMS VAX is referred to generically as X.25 for OpenVMS.

Audience

This manual is intended for anyone who performs the tasks listed above.

The manual assumes that you have a basic knowledge of OpenVMS.

The manual also assumes that anyone connecting to a remote system has a basic knowledge of data communications, and understands the role of a PAD in X.29 communications.

For use and management of X.25 Mail, it is assumed that you understand and have some experience with OpenVMS Mail.

For management of X.29 communication links, it is assumed that you understand and have some experience with:

- Data communications
- Packet switching
- Local Area Networks
- Wide Area Networks
- OpenVMS system management
- X.25 for OpenVMS functionality
- The CCITT X.29 recommendation
Structure

The guide consists of 12 chapters. For ease of use the chapters are divided into three parts:

- **Part I** describes how to use and manage X.25 Mail. Part I consists of two chapters:
 - Chapter 1 describes how to use X.25 Mail to send and receive mail over X.25. It also details how to simplify the use of X.25 Mail by setting up logical names for destination nodes. (The information in this chapter was formerly in the *DECnet/OSI for VMS—VAX P.S.I. Mail and X.29 Use* manual.)
 - Chapter 2 details how to set up and manage call templates and filters, to define system-wide logical names for remote DTE addresses, and how to secure your system to prevent unauthorized use of the X.25 Mail facility. (The information in this chapter was formerly in the *DECnet/OSI for VMS—VAX P.S.I. Mail and X.29 Management* manual.)

- **Part II** describes how to use X.29. (The information in this part was formerly in the *DECnet/OSI for VMS—VAX P.S.I. Mail and X.29 Use* manual.) Part II consists of five chapters:
 - Chapter 3 describes how to connect to a remote DTE.
 - Chapter 4 describes how you can control the way your connection to a remote DTE behaves when you connect to the remote DTE.
 - Chapter 5 describes how to change the characteristics of the host-based PAD during a PAD session.
 - Chapter 6 describes how to use an X.29 terminal to connect to a remote system, using a host-based PAD in CCITT mode.
 - Chapter 7 describes how to use a remote OpenVMS system to control the behavior of your X.29 terminal.

- **Part III** describes how to manage X.29. Some of the tasks described in this part will be useful for experienced users of X.29. (The information in this part was formerly in the *DECnet/OSI for VMS—VAX P.S.I. Mail and X.29 Management* manual.) Part III consists of 5 chapters:
 - Chapter 8 provides an introduction to managing X.29. It provides an overview of how to manage templates and filters, how to set, display and change X.29 terminal characteristics, and how to change the operation of a PAD. Specific details of these management tasks are given in Chapters Chapter 9 to Chapter 12.
 - Chapter 9 details how to set up system-wide default characteristics for X.29 terminals.
 - Chapter 10 describes how to change the characteristics of an X.29 terminal during an X.29 session.
 - Chapter 11 details how to display the characteristics of an X.29 terminal.
 - Chapter 12 details how to set up an X.29 terminal as a spooled device.

Two appendices are also included:

- **Appendix A** describes the PAD parameters.
Appendix B contains the initial PAD parameter profile.

Associated Manuals

The following sections describe HP DECnet–Plus for OpenVMS, HP X.25 for OpenVMS, and HP OpenVMS manuals that either directly describe the X.25 for OpenVMS software or provide related information.

HP DECnet–Plus for OpenVMS Documentation

The following DECnet–Plus manuals contain information useful to X.25 for OpenVMS managers, users, and programmers:

- **HP DECnet–Plus for OpenVMS —Introduction and User's Guide**
 This manual provides general information on DECnet–Plus and describes the concept of packet switching data networks.

- **HP DECnet–Plus for OpenVMS—Installation and Configuration**
 This manual describes how to install and configure DECnet–Plus for OpenVMS software. For OpenVMS I64 and OpenVMS Alpha systems, this manual also describes how to install X.25 for OpenVMS software. Details on configuring X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha systems are provided in the **HP X.25 for OpenVMS—Configuration** manual. For OpenVMS VAX systems, this manual also describes how to install and configure the X.25 functionality provided by DECnet–Plus for OpenVMS VAX.

- **HP DECnet–Plus for OpenVMS—Network Management**
 This manual provides conceptual and task information about managing and monitoring a DECnet–Plus network. In addition, the manual devotes a section to the management of X.25 entities used by DECnet operating over X.25 data links.

- **HP DECnet–Plus for OpenVMS—Network Control Language Reference**
 This manual provides detailed information on the Network Control Language (NCL), which is used to manage X.25 for OpenVMS management entities.

HP X.25 for OpenVMS Documentation

The following manuals make up the X.25 for OpenVMS documentation set:

- **HP X.25 for OpenVMS—Configuration** (OpenVMS I64 and OpenVMS Alpha)
 This manual explains how to configure X.25 for OpenVMS software on OpenVMS I64 and OpenVMS Alpha systems.

- **HP X.25 for OpenVMS—Security Guide**
 This manual describes the X.25 Security model and how to set up, manage, and monitor X.25 Security to protect your X.25 for OpenVMS system from unauthorized incoming and outgoing calls.

- **HP X.25 for OpenVMS—Problem Solving Guide**
 This manual provides guidance on how to analyze and correct X.25–related and X.29–related problems that may occur while using the X.25 for OpenVMS software. In addition, the manual describes loopback testing for LAPB data links.

- **HP X.25 for OpenVMS—Programming Guide**
 This manual describes how to write X.25 and X.29 programs to perform network operations.
• **HP X.25 for OpenVMS—Programming Reference**
 This manual provides reference information for X.25 and X.29 programmers. It is a companion manual to the *HP X.25 for OpenVMS—Programming Guide*.

• **HP X.25 for OpenVMS—Utilities Guide**
 This manual describes how to use and manage X.25 Mail and how to use and manage a host–based PAD to connect to a remote system. It also describes how to manage the X.29 communication links used for both of these functions. In addition, this manual explains how to use OpenVMS DCL SET TERMINAL/X29 commands to manage remote host–based or network PADs.

• **HP X.25 for OpenVMS—Accounting**
 This manual describes how to use X.25 Accounting to obtain performance records and information on how X.25 is being used on your system.

HP OpenVMS Documentation
The following OpenVMS manuals contain information useful to X.25 for OpenVMS managers, users, and programmers:

• The current *HP OpenVMS New Features and Documentation Overview* manual
• *HP OpenVMS DCL User’s Manual*
• *HP OpenVMS DCL Dictionary*
• *HP OpenVMS System Management Utilities Reference Manual*
• *HP OpenVMS System Services Reference Manual*
• *HP OpenVMS Guide to System Security*

Reader’s Comments
HP welcomes your comments on this manual or any of the X.25 for OpenVMS documents. Please send comments to either of the following addresses:

Internet: **openvmsdoc@hp.com**

Mail: Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation and for online versions of most X.25 for OpenVMS documentation, visit the following World Wide Web address:

http://www.hp.com/go/openvms/doc/
Terminology

The terminology used in the VAX P.S.I. product has been replaced by the terminology used in the X.25 for OpenVMS product. Table 1 shows the correlation between VAX P.S.I. terms and their X.25 for OpenVMS counterparts.

<table>
<thead>
<tr>
<th>VAX P.S.I.</th>
<th>X.25 for OpenVMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access system</td>
<td>X.25 Client system</td>
</tr>
<tr>
<td>Native system</td>
<td>X.25 Direct Connect system</td>
</tr>
<tr>
<td>Multihost system</td>
<td>X.25 Connector system</td>
</tr>
<tr>
<td>Gateway system</td>
<td>X.25 Connector system</td>
</tr>
</tbody>
</table>

In addition to the terms shown in Table 1, the X.25 for OpenVMS documentation set uses the following standard terms for client systems, server systems, relay systems, and the X.25 for OpenVMS management entities that represent these systems:

<table>
<thead>
<tr>
<th>Client system</th>
<th>A client system of an X.25 Connector system (and therefore a client of the X25 Server management module on the X.25 Connector system.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Client system</td>
<td>A client system of an X.25 Relay system (and therefore a client of the X25 Relay management module on the X.25 Relay system.)</td>
</tr>
<tr>
<td>Relay–Client</td>
<td>A shorthand term for an X25 RELAY CLIENT management entity on an X.25 Relay system that contains management information about an actual Relay Client system.</td>
</tr>
<tr>
<td>Relay system</td>
<td>An X.25 Direct Connect or Connector system with the X.25 Relay module enabled.</td>
</tr>
<tr>
<td>Server Client system</td>
<td>Another term for a Client system.</td>
</tr>
<tr>
<td>Server–Client</td>
<td>A shorthand term for an X25 SERVER CLIENT management entity on an X.25 Connector system that contains management information about one or more actual X.25 Client systems.</td>
</tr>
</tbody>
</table>

For more information about clients, servers, and relays in X.25 for OpenVMS, refer to the HP X.25 for OpenVMS—Configuration manual and the HP X.25 for OpenVMS—Management Guide.
Conventions

The following conventions are used in the X.25 for OpenVMS documentation set:

UPPERCASE and lowercase

The OpenVMS operating system does not differentiate between lowercase and uppercase characters. Literal strings that appear in text, examples, syntax descriptions, and function descriptions can be entered using uppercase characters, lowercase characters, or a combination of both.

In running text, uppercase characters indicate OpenVMS DCL commands and command qualifiers; Network Control Language (NCL) commands and command parameters; other product–specific commands and command parameters; network management entities; OpenVMS system logical names; and OpenVMS system service calls, parameters, and item codes.

Leading uppercase characters, such as Protocol State, indicate management entity characteristics and management entity event names. Leading uppercase characters are also used for the top-level management entities known as modules.

system output

This typeface is used in interactive and code examples to indicate system output. In running text, this typeface is used to indicate the exact name of a device, directory, or file; the name of an instance of a network management entity; or an example value assigned to a DCL qualifier or NCL command parameter.

user input

In interactive examples, user input is shown in **bold** print.

$ In this manual, a dollar sign ($) is used to represent the default OpenVMS user prompt.

Italic text

Italic text indicates variables or book names. Variables include information that varies in system input and output. In discussions of event messages, italic text indicates a possible value of an event argument.

Bold text

Bold text indicates an important term, or important information.

()

In a command definition, parenthesis indicate that you must enclose the options in parenthesis if you choose more than one. Separate the options using commas.

{}

In a command definition, braces are used to enclose sets of values. The braces are a required part of the command syntax.

[]

In a command definition, square brackets are used to enclose parts of the command that are optional. You can choose one, none, or all of the options. The brackets are not part of the command syntax. However, brackets are a required syntax element when specifying a directory name in an OpenVMS file specification.

Note

The following conventions apply to multiplatform documentation.

Indicates information specific to OpenVMS I64 and OpenVMS Alpha. Note that single lines of information specific to OpenVMS I64 and OpenVMS Alpha are marked “(OpenVMS I64 and OpenVMS Alpha)” or “(OpenVMS I64/Alpha)”.

Indicates information specific to OpenVMS VAX. Note that single lines of information specific to OpenVMS VAX are marked “(OpenVMS VAX)”.

Indicates the end of platform-specific information.
This part of the manual describes how to use and manage X.25 Mail. It consists of 2 chapters:

- Chapter 1 describes how to send and receive mail, and describes how to set up logical names to simplify the use of X.25 Mail.
- Chapter 2 describes how to perform tasks such as managing templates, filters, and security, and how to define system-wide logical names for the addresses of remote DTEs.
The X.25 Mail utility\(^1\) is an extension to the OpenVMS Mail utility. It enables you to send mail to, and receive mail from, other OpenVMS systems across a PSDN. To do this, X.25 Mail utilizes OpenVMS Mail.

To use X.25 Mail, both the sending and receiving systems must run X.25 for OpenVMS and OpenVMS Mail.

This chapter comprises two sections:

- Section 1.1 describes how to send and receive mail using X.25 Mail.
- Section 1.2 describes how to set up logical names to simplify the use of X.25 Mail.

1.1 Sending and Receiving Mail

Sending and receiving messages using X.25 Mail is very similar to the same tasks using OpenVMS Mail. The only difference is the form in which you specify the address of the recipient.

To send mail using X.25 Mail, do the following:

1. Invoke the OpenVMS Mail utility.
2. Enter the SEND command.
3. At the “To:” prompt, enter the address in the following format:

 \[
 \text{PSI}\%dte-class.dte-address::username
 \]

 where:

 - \(dte-class\) is the name of the DTE class from which a member DTE will be used to send the mail.
 - If you do not specify a DTE class, X.25 Mail uses the DTE class specified in the X.25 Mail template. A template defines the values for the call parameters of outgoing calls. For details of the X.25 Mail template, which contains recommended values for the call parameters, refer to Chapter 2.
 - \(dte-address\) is the address of the DTE to which you are sending mail. The DTE address can consist of up to 15 characters. For details of the DTE address of the remote node you want to send mail to, ask your system manager.
 - \(username\) is the user name of the account to which you are sending mail.

\(^1\) On DECnet–Plus for OpenVMS VAX systems, this utility used to be referred to as the P.S.I. MAIL utility.
Using X.25 Mail

1.1 Sending and Receiving Mail

The following example shows how to send mail using OpenVMS Mail over X.25 to user LONG at DTE address 328740975776 in DTE class CLASSY.

```
$ mail
MAIL> send
To: PSI%classy.328740975776::long
CC: 
Subj: This month's results
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
Hi there,
Have you got them yet?
JB
MAIL>
```

You can send one mail message to a mixture of destinations using X.25 Mail for some and OpenVMS Mail for others. Simply use the X.25 Mail address format for users you are contacting over X.25 and the OpenVMS Mail format for users you are contacting with OpenVMS Mail.

For example, in the following mail session, OpenVMS Mail is used to send the message to user M_MONEY and X.25 Mail is used to send the message to users JONES and EVANS.

```
$ mail
MAIL> send
To: BANK::M_MONEY,PSI%CLASSY.234273412345::JONES,EVANS
CC: 
Subj: This month's results
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
Hi there,
Have you got them yet?
JB
MAIL>
```

1.2 Using Logical Names for Addresses

You can simplify use of X.25 Mail by using logical names for combinations of DTE class and DTE address. For example, suppose you assign the logical name SHORT to the following combination:

DTE class: CLASSY
DTE address: 328740975776

By using this logical name, the following X.25 Mail address

CLASSY.328740975776::LONG

can be shortened to:

SHORT::LONG

There are two types of logical names you can use:

- **System–wide logical names**
 These are set up by your system manager, and are available to any user on your system. System–wide logical names are useful for DTEs to which several users send mail using X.25 Mail. Chapter 2 contains further information about system–wide logical names.
• Personal logical names
 These are logical names which you alone use to refer to particular DTEs. Section 1.2.1 describes how to create your own logical names.

1.2.1 Creating Personal Logical Names
To create your own logical names for DTE addresses, create a private DTE logical name table, and add it to the system–wide DTE logical name table, do the following:

1. Create the private logical name table, using the DCL CREATE/NAME_TABLE command. Refer to the OpenVMS general user documentation for details of this command.

2. Add the DTE translations to this table with the command:

 $ DEFINE/TABLE=table-name logical-name dte-class.dte-address

 where:
 • table-name is the name of your table.
 • logical-name is the logical name you want to use.
 • dte-class is the local DTE class you want to use.
 • dte-address is the address of the remote DTE.
 For example, to enter in a logical name table called CONTACTS the logical name LONDON to send mail to DTE address 23412345678 through a DTE in class CLASS1, enter:

 $ DEFINE/TABLE=CONTACTS LONDON CLASS1.23412345678

3. Add your DTE logical name table to the system–wide DTE logical name table with the command:

 $ DEFINE/TABLE=LNM$PROCESS_DIRECTORY PSI$DTE_DIRECTORY -$_$ table-name, PSI$DTE_TABLE

 For example, to add the table CONTACTS to the system–wide DTE logical name table, enter:

 $ DEFINE/TABLE=LNM$PROCESS_DIRECTORY PSI$DTE_DIRECTORY -$_$ CONTACTS, PSI$DTE_TABLE

 The logical names you have defined and the system–wide logical names now apply within your process.
2.1 Introduction

X.25 Mail provides a number of facilities that allow you to control the mail sent to and from your system and to make using X.25 Mail as easy as possible. For example, you can set up templates for outgoing calls, filters for incoming calls, and logical names for DTE addresses.

This chapter describes how to:

- Manage templates
- Manage filters
- Define system–wide logical names for the addresses of remote DTEs
- Manage security for X.25 Mail

2.2 Templates

Templates define the values for the call parameters of outgoing calls.

When you configure your system, a template called Default is set up. It is possible to change the Default template, to give different values to all outgoing calls. You can alter the existing call parameter values or add new call parameters to the template.

It is also possible to create new templates for different types of outgoing calls. If you create a new template you should define the logical name PSI$MAIL TEMPLATE to point to the new template.

Note

If you do not define the logical name, X.25 Mail uses the Default template.

The recommended method of creating and modifying templates for use by X.25 Mail is to run the X.25 configuration program, which includes a section for configuring templates. For details on configuring templates for X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha systems, refer to the HP X.25 for OpenVMS—Configuration manual. For details on configuring templates for DECnet–Plus for OpenVMS VAX systems, refer to the HP DECnet–Plus for OpenVMS—Installation and Configuration manual.
Managing X.25 Mail

2.2 Templates

Once created, a template can be modified using either the X.25 configuration program, or by issuing NCL commands interactively:

- To make **temporary changes** to a template, issue NCL commands interactively. Any changes you make will be lost when the system is rebooted.

 For details of modifying templates using NCL commands, refer to the *HP X.25 for OpenVMS—Management Guide.*

- To make **permanent changes** to a template, run the X.25 configuration program. (Use the ADVANCED mode on OpenVMS I64 and OpenVMS Alpha systems.)

 For details on using the X.25 configuration program on OpenVMS I64 and OpenVMS Alpha systems, refer to the *HP X.25 for OpenVMS—Configuration manual.* For details on using the X.25 configuration program on DECnet–Plus for OpenVMS VAX systems, refer to the *HP DECnet–Plus for OpenVMS—Installation and Configuration manual.*

2.3 Filters

Filters determine which applications receive an incoming call.

When you configure your system to include X.25 Mail support, a filter called X25_MAIL is set up. If you want to modify any of the existing filter attributes or add new attributes, you can modify the X25_MAIL filter. Like templates, a filter can be modified using either the X.25 configuration program, or by issuing NCL commands:

- To make **temporary changes** to the filter, issue NCL commands interactively.

 For details of modifying filters using NCL commands, refer to the *HP X.25 for OpenVMS—Management Guide.*

- To make **permanent changes** to the filter, run the advanced mode of the X.25 configuration program.

 For details on using the X.25 configuration program on OpenVMS I64 and OpenVMS Alpha systems, refer to the *HP X.25 for OpenVMS—Configuration manual.* For details on using the X.25 configuration program on DECnet–Plus for OpenVMS VAX systems, refer to the *HP DECnet–Plus for OpenVMS—Installation and Configuration manual.*

2.4 Defining Logical Names

You can send mail using X.25 Mail in the same way as sending mail using OpenVMS Mail except that you must specify a DTE address (rather than a node name) in response to the following prompt:

To:

DTE addresses are lengthy and difficult to remember. Therefore, it is a good idea to define logical names to point to DTE addresses. Users can then send mail by specifying a short name rather than a long string of numbers.

You can define personal logical names (refer to Chapter 1), or system–wide logical names (refer to Section 2.4.1).
2.4 Defining Logical Names

2.4.1 Defining System–Wide Logical Names

When the X.25 software is first invoked, it creates a logical name table, called PSI$DTE_TABLE, for DTE classes and DTE addresses. Any system–wide logical names you create must be entered into this table.

Each table entry in PSI$DTE_TABLE uses approximately 50 bytes of paged dynamic memory. You should ensure that the SYSGEN parameter PAGEDYN is set to a value high enough to allow you to add entries to the logical name table.

2.4.1.1 Logical Names for Outgoing Mail

To define a logical name for the address of a remote destination, use the following command:

```
$ DEFINE/TABLE=PSI$DTE_TABLE logical-name [dte-class.]dte-address
```

where:

- `logical-name` is the logical name you want to use for the remote DTE.
- `dte-class` is the local DTE class you want to use.
- `dte-address` is the address of the remote DTE.

If you do not specify the `dte-class` the default is used. The default DTE class is defined either in the Default template or by defining the PSI$NETWORK logical name.

Note

If you do not specify `dte-class` and a default DTE class has not been defined either in the Default template or by defining the PSI$NETWORK logical name, the call will fail.

The DTE class specified in the DEFINE/TABLE command is case sensitive. If you want the DTE class to be entered in lowercase characters or a mixture of lowercase and uppercase characters, enclose `dte-class.dte-address` in quotes. If quotes are not used, the DTE class is entered in uppercase characters.

2.4.1.2 Logical Names for Incoming Mail

If you want the DTE address of incoming mail to be displayed on your screen as a logical name, you must define the logical name as a separate entry in the X.25 logical name table in addition to the logical name you have set up for outgoing mail. To do this, place an entry in the X.25 logical name table having the following format:

```
$ DEFINE/TABLE=PSI$DTE_TABLE PSI$MAIL_DTE_[dte-class.]dte-address logical-name
```

For example, if you want the DTE class CLASSY with DTE address 23427341234567 to be known as ERIC for outgoing mail, and incoming mail from the same source to appear as coming from ERIC, enter the following DCL commands:

```
$ DEFINE/TABLE=PSI$DTE_TABLE PSI$MAIL_DTE_CLASSY.23427341234567 ERIC
```

You can now address outgoing mail to DTE class CLASSY, DTE address 23427341234567, using the following simplified address:

To: PSI%ERIC::username
Incoming mail from DTE class CLASSY, DTE address 23427341234567 will be displayed as:

From: PSI%ERIC::username

Note

The DTE class specified in the DEFINE/TABLE command is case sensitive. If you want the DTE class to be entered in lowercase characters or a mixture of lowercase and uppercase characters, enclose `dte-class.dte-address` in quotes. If quotes are not used, the DTE class is entered in uppercase characters.

2.5 Security and X.25 Mail

In a DECnet–Plus for OpenVMS system, the configuration parameters and access control information for incoming X.25 Mail calls are contained in the object database. Users who want to use X.25 Mail to send mail must have the privilege NETMBX. This privilege allows users to assign a channel to the NET device, and is required to create a logical link to a remote node.

During configuration of the X.25 software, security information can be entered that defines which users are permitted to make and receive X.25 calls.

2.5.1 Security and Poor Man’s Routing

Using X.25 for OpenVMS, local and remote users have the potential to use OpenVMS Mail to send information across a PSDN to a remote destination. This can be achieved by specifying **each node** in the route from the source node to the destination node. This method of specifying routing information to send mail is known as **Poor Man’s Routing** (PMR).

Indiscriminate use of PMR by local and other users to send and forward mail via your local DTEs across a PSDN can lead to an increase in network costs.

X.25 Security includes a facility to restrict the use of PSDNs only to selected users, and to ensure that general users cannot use PMR to send mail across PSDNs. The following sections describe how PMR works, and show how you can use X.25 Security to restrict the use of PMR to prevent local and other users abusing your local DTEs and gaining access to PSDNs via those DTEs.

2.5.2 Preventing Poor Man’s Routing

Figure 2–1 illustrates a typical network configuration consisting of 6 nodes and two PSDNs. In conjunction with descriptions in Sections 2.5.2.1 and 2.5.2.2, this figure will be used to illustrate potential security problems caused by PMR and how such problems can be prevented.

2.5.2.1 Preventing Indiscriminate Use of OpenVMS Mail

In Figure 2–1, users on Node B (a non–X.25 node) and Node A (an X.25 Connector node) in Paris can send and receive OpenVMS Mail to and from other nodes on their local DECnet.

Similarly, users on Node D (an X.25 Client node) and Node E (an X.25 Connector node) in London can send and receive OpenVMS Mail to and from other nodes on their local DECnet.
However, a user on Node B in Paris can also send OpenVMS Mail calls across PSDN1 to Node E in London (or any other node on that DECnet) using PMR and X.25 Mail. This can be achieved by specifying a mail command in the form:

```
MAIL> SEND TEXT.TXT
To: A::PSI@dte-class.remote-dte::user-name
```

where:

- `dte-class` is the DTE class name (usually the network name).
- `remote-dte` is the remote DTE address of Node E.

![Figure 2–1 X.25 Security and MAIL](image-url)
Note that in this example, Node A is charged for the X.25 call.

Normally, you would grant the rights identifier PSI$X25_USER to the processes and users who are permitted to make outgoing X.25 calls. This rights identifier ensures that other users cannot make outgoing X.25 calls.

However, for users on non–X.25 nodes in your network, PMR using an accessible X.25 Connector node can be used because outgoing X.25 calls use the DECnet MAIL object's user name.

To prevent the indiscriminate use of PMR by users on non–X.25 nodes in your network, do not grant the DECnet MAIL process the PSI$X25_USER rights identifier.

To restrict the use of PMR only to specified remote DTEs, use X.25 Security to restrict X.25 Mail access only to the specified remote DTEs. You can do this by defining X.25 Mail as a local application and giving that application rights identifiers that allow restricted outgoing access only to known specific DTEs.

2.5.2.2 Preventing Indiscriminate Use of X.25 Mail

Incoming X.25 Mail to Non–X.25 Nodes

In Figure 2–1, users on Node A in Paris could use PMR to send mail using X.25 Mail to remote nodes across PSDN1. They could send mail using X.25 Mail to a user on Node F in London (a non–X.25 node), by specifying each node in the route from their node to the destination node. For example, to send mail using X.25 Mail to a user on Node F, a mail command in the following format can be used:

```bash
MAIL> SEND TEXT.TXT
To: PSI%dte-class.remote-dte::F::user-name
```

where:

- **dte-class** is the DTE class name (usually the network name).
- **remote-dte** is the remote DTE address of Node E.

In this example, Node A is charged for the X.25 call.

Preventing Incoming X.25 Mail to Non–X.25 for OpenVMS Nodes on Your Network

X.25 Security performs remote DTE address verification on the X.25 Connector node for incoming X.25 Mail calls before X.25 Mail runs. However, the X.25 Connector node requires a DECnet logical link to forward mail to the non–X.25 nodes. This DECnet logical link requires NETMBX privilege.

To prevent remote DTEs using PMR to send mail to non–X.25 nodes in your network:

1. Create an account in which to run X.25 Mail. This should be a different account to the DECnet MAIL object account.
2. Grant the PSI$X25_USER rights identifier to the user name associated with the X25_MAIL object.
3. Do not grant the NETMBX privilege to the user name associated with the X25_MAIL application.

Note that this prevents all redirection of incoming X.25 Mail calls to non–X.25 nodes on your network.
Forwarding X.25 Mail Calls Via Connector Nodes

In Figure 2–1, users on Node A in Paris (an X.25 node) could use Node E (an X.25 Connector node) in London to forward X.25 Mail calls to Node C in New York (an X.25 node), using a command of the form:

```
MAIL> SEND TEXT.TXT
To: PSI%dte-class1.remote-dte1::PSI%dte-class2.remote-dte2::
user-name
```

where:

- `dte-class1` and `dte-class2` are the DTE class names for node E and C respectively.
- `remote-dte1` and `remote-dte2` are the remote DTE addresses of node E and C respectively.

In this case, Node A is charged only for the X.25 call to Node E; Node E is charged for the X.25 call to Node C.

Indiscriminate use of your node by users on remote nodes to forward X.25 Mail calls could lead to large network costs for your system. In addition, it may be illegal to inadvertently forward third party traffic via your system.

Preventing Remote Nodes Using Your Node to Forward Third Party Traffic

You can prevent your node from forwarding third party traffic by setting up X.25 Security and privileges for incoming and outgoing calls:

1. Create an account in which to run X.25 Mail. This should be a different account from the DECnet MAIL object account.
2. Set up X.25 Security to restrict incoming X.25 Mail calls to accept only those calls from specified remote DTEs. You can do this by creating rights identifiers and access levels for incoming calls to the X25_MAIL application.
3. Set up X.25 Security to prevent outgoing X.25 Mail calls that use the user name associated with the X25_MAIL application.
4. Grant the PSI$X25_USER rights identifier to the user name associated with the X25_MAIL application.
5. Do not grant NETMBX privilege to the user name associated with the X25_MAIL application.

In this way, you can prevent remote nodes from using your node to forward third party traffic.
This part of the manual describes how to use an X.29 terminal to connect to a remote system, using a host-based PAD. It consists of 5 chapters:

- Chapter 3 describes how to connect to a remote DTE.
- Chapter 4 describes how you can control the way your connection to a remote DTE behaves when you connect to the remote DTE.
- Chapter 5 describes how to change the characteristics of the host-based PAD during a PAD session.
- Chapter 6 describes how to use an X.29 terminal to connect to a remote system, using a host-based PAD in CCITT mode.
- Chapter 7 describes how to use a remote OpenVMS system to control the behavior of your X.29 terminal.
Using an X.29 Terminal to Connect to a Remote System

The X.29 protocol defines the procedure for exchange of control information and user data between a Packet Assembler/Disassembler (PAD) and a remote packet-mode DTE.

This chapter describes how to use an X.29 terminal to connect to a remote system, using a host–based PAD. Figure 3–1 illustrates the connection between your X.29 terminal and the remote system.

![Figure 3–1 Connecting to a Remote System](image)

3.1 Connecting to a Remote System

To connect to a remote system, issue the following command:

```
$ SET HOST/X29 dte-class.dte-address
```

where:

- *dte-class* is the name of the DTE class from which a member DTE will be used to connect to the remote DTE.
3.1 Connecting to a Remote System

- **dte-address** is the address of the DTE to which you want to connect. The DTE address can consist of up to 15 digits.

For example, to use a DTE in class **CLASS_A** to connect to a DTE with address **7608657086**, enter the command:

```$ SET HOST/X29 CLASS_A.7608657086```

You can simplify the SET HOST/X29 command by using a DTE logical name instead of entering the DTE class and DTE address. For example, if the DTE you are connecting to has the logical name **PARIS**, you can connect to that DTE with the command:

```$ SET HOST/X29 PARIS```

Note that the logical name **PARIS** is defined using the command:

```$ DEFINE/TABLE=PSI$DTE_TABLE PARIS CLASS_A.7608657086```

Details of using and setting up DTE logical names are given in Section 1.2.

Note that if you do not specify a DTE class in the command line, X.25 for OpenVMS uses the **X29Login** template on OpenVMS I64 and OpenVMS Alpha systems or the **Default** template on OpenVMS VAX systems. For details of the **X29Login** template, refer to Part III.

You can control the characteristics of your connection to the remote DTE by adding qualifiers to the SET HOST/X29 command. Chapter 4 describes how to do this.

### 3.1.1 Including SET HOST/X29 in a Batch Job

You can include the SET HOST/X29 command in a batch job. If you do, take note of the following points:

- Data following the SET HOST/X29 command will be sent to the remote DTE as soon as the connection is established. If the remote DTE is an OpenVMS system, this data will be discarded (because there will not have been a prompt for the user name at this stage), and the login procedure will fail.

- The PAD will not clear a call if the PAD is running in batch mode. The remote DTE has to clear the call.

### 3.2 Disconnecting from a Remote System

There are two ways to disconnect from a remote system:

- If the remote system is an OpenVMS system, type:

  ```$ LOGOUT```

 Normally, this clears the call and returns you to your host system. If this does not clear the call, you must use the method described in the next item.

- If the remote system does not clear the call when you log out:

 1. Enter the PAD command mode, by pressing the escape character. The default escape character is **Ctrl/P**, but if you have set a different escape character for your session, you should use that character. (Section 4.1.2 describes how to set an escape character when you connect to a remote system.) If there is no escape character defined, press **Ctrl/Y** twice.
2. Enter the command:

 \texttt{PAD> CLEAR}

 The call will be cleared, and you will be returned to your host system.

3.3 Controlling Your Connection to the Remote DTE

When you connect to a remote DTE using the \texttt{SET HOST/X29} command, you can control the way in which:

- The PAD interacts with your X.29 terminal. This is achieved by setting or changing PAD parameters. For example, you can control:
 - Whether your input is echoed back to you.
 - Whether messages from the PAD are displayed on your terminal.
 - Which ASCII characters the PAD will use for the Delete character and the Line–Delete character.

For a description of each of the PAD parameters and details of the values you can set, refer to Chapter 10.

You can set PAD parameters either when you invoke the \texttt{SET HOST/X29} connection (refer to Section 4.1), or during a \texttt{SET HOST/X29} session (refer to Chapter 5).

There are several files that X.25 for OpenVMS automatically uses to set PAD parameters, and there are files that you can use to set PAD parameters. Section 3.3.1 describes these files, and how X.25 for OpenVMS uses them.

- Data is passed between the host–based PAD and the remote DTE.

 For example, this facility allows you to specify:
 - A closed user group (CUG) for the remote DTE.
 - Whether you want to use reverse charging.
 - The size of packet to be used.

You specify the characteristics of your connection from the host–based PAD to the remote DTE when you issue the \texttt{SET HOST/X29} command. For a description of how to set the characteristics of this connection, refer to Section 4.2.

3.3.1 Setting PAD Parameters Using the \texttt{SET HOST/X29} Command

When you establish a \texttt{SET HOST/X29} connection, X.25 for OpenVMS uses several files to set the PAD parameters. This results in some of the PAD parameters being set and reset several times. In addition, the PAD parameters may be reset during the X.29 session if you specify new values for one or more of the parameters.

If you want to control the behavior of the PAD during your \texttt{SET HOST/X29} session, you need to know:

- Which files and command qualifiers X.25 for OpenVMS uses to set the PAD parameters.
- In what order X.25 for OpenVMS processes these files and command qualifiers. This is important because each time X.25 for OpenVMS sets a PAD parameter, the new setting overrides any previous settings.
3.3 Controlling Your Connection to the Remote DTE

3.3.1.1 Files and Command Qualifiers Used to Set PAD Parameters

The files that X.25 for OpenVMS uses to set and reset PAD parameters are:

- The PAD initial profile
 This file is supplied with X.25 for OpenVMS, and contains default values for some of the PAD parameters. These values are listed in Appendix B.

- The PSI$PAD_INIT file
 PSI$PAD_INIT is a logical name that should be used to point to a PAD initialization file (if one has been set up). An initialization file is useful if you want to set certain PAD parameters and execute certain DCL commands each time you establish a SET HOST/X29 connection.

 To set up a PAD initialization file, create a file containing any PAD commands you want to issue each time you make a SET HOST/X29 connection. Then define the logical name PSI$PAD_INIT to point to your initialization file.

- PAD parameter profile file
 The PAD parameter profile file contains a set of PAD parameter profiles. Each PAD parameter profile is a named list of settings for certain PAD parameters. PAD parameter profiles are useful if you regularly need to set certain PAD parameters to particular values, for example, to access a non–OpenVMS system.

 If you have defined a PAD parameter profile for a remote system, you can set the parameters you need simply by naming the profile. You do not need to specify each parameter individually. You can specify PAD parameter profiles either in the SET HOST/X29 command line, or by issuing commands to the PAD during a SET HOST/X29 session.

 For details of how to create and use a PAD parameter profile file, refer to Section 3.3.2.

In addition to the above files:

- X.25 for OpenVMS reads certain PAD parameters (for example, SPEED) from your terminal's characteristics.

- You can set individual parameters yourself, either at the start of your SET HOST/X29 session, by using qualifiers to the SET HOST/X29 command, or during your session, by issuing commands to the PAD.

 Figure 3–2 illustrates the order in which X.25 for OpenVMS processes the files and qualifiers following a SET HOST/X29 command.

 For example, if you specify a PAD parameter profile which gives parameter 4 (TIMEOUT) the value 10, and specify TIMEOUT individually as 20, TIMEOUT will take the value 20, because the /PARAMETER qualifier is processed after the /PROFILE qualifier.

 The qualifiers to the SET HOST/X29 command are described in Chapter 4.
3.3 Controlling Your Connection to the Remote DTE

Figure 3–2 Sequence in which PAD Parameters are Set After Issuing a SET HOST/X29 Command

1. **SET HOST/X29 command**

2. X.25 for OpenVMS reads PAD parameters from initial Profile.

3. X.25 for OpenVMS reads PAD parameters from your terminal.

4. X.25 for OpenVMS looks for the logical PSI$PAD_INIT, and processes the file it points to, if any.

5. X.25 for OpenVMS processes any profile files you have specified in the SET HOST/X29 command.

6. X.25 for OpenVMS sets any PAD parameters you have specified in the SET HOST/X29 command.

7. X.25 for OpenVMS sets any other characteristics you have specified, and continues with the SET HOST/X29 session.

8. X.25 for OpenVMS sets up the call. Once the call is established, the remote host modifies the PAD parameters whenever required.
3.3.2 Creating the PAD Initialization File and PAD Parameter Profiles

3.3.2.1 Creating a PAD Initialization File

To set up a PAD initialization file, create a file containing any PAD commands you want to issue each time you make a SET HOST/X29 connection. Then define the logical name PSI$PAD_INIT to point to your initialization file.

3.3.2.2 Creating a PAD Profile File

The system–wide PAD profiles for your system are in the profile file SYS$MANAGER:PSI$PAD_PROFILES.DAT.

They are usually created by the system manager, and are available for you to use when you use the host–based PAD to connect to a remote terminal.

You can create your own PAD profile file for sets of PAD parameter settings that you frequently use. A PAD profile file consists of profile names and the parameter settings associated with them. You do not have to set all the parameters in each profile, only the ones that are specifically required. To create a PAD profile file, create a file using a text editor, and enter a PROFILE command line for each profile you want to create. The PROFILE command line should be entered in the following format:

```
PROFILE profile-name parameter-list
```

where:

- `profile-name` is the name of the profile.
- `parameter-list` is a list of parameter keywords and their values.

If you specify a parameter, but no value, that parameter will be set to 1. If you put NO in front of a parameter (for example, NOEDIT), that parameter will be set to 0.

For example, the following example shows a profile called MACHINE_5 which sets the parameters:

```
ECHO=1
EDIT=0
BREAK=2
FORWARDING_CHARACTERS=2
```

```
! Profile for connection to Machine 5
PROFILE MACHINE_5 -
   ECHO, NOEDIT, BREAK=2, FORWARDING_CHARACTERS=2
```

Note that the hyphen after MACHINE_5 continues the PROFILE command line onto the next line.

Refer to Chapter 10 for details of the PAD parameters and their values.

To use your profile file instead of the system profile file, define the logical name PSI$PAD_PROFILES to point to your file.
3.4 Specifying the Type of Log File for Your Session

If you want to create a log of your SET HOST/X29 session, you can use one of two types of log file. These are the NETWORK log file and the TERMINAL log file:

- A NETWORK log file captures data on the network side of the host–based PAD. You can change the display format of a NETWORK log file.

- A TERMINAL log file captures data that is displayed on your screen. Note that:
 - The TERMINAL log file is only suitable for use with the TYPE and PRINT commands—you are advised not to EDIT the file unless you are using the TECO editor.
 - If you use the TERMINAL type of log file, the /STAMP qualifier has no effect.

Note that you cannot change the log file type **during** a PAD session.

The type of log file is controlled by the logical name PSI$PAD_LOG. This logical name can be defined as either NETWORK or TERMINAL. If the logical name is not defined, the log file type defaults to TERMINAL.

If you specify a type other than NETWORK or TERMINAL, the PAD session will terminate and the following error message will be displayed:

```
%PAD-F-INITERROR, error occurred during initialization
-PAD-E-INVLOGTRAN, invalid translation of PSI$PAD_LOG logical name
```
Controlling the Connection to the Remote DTE

You can control the way your connection to a remote DTE behaves, by adding qualifiers to the SET HOST/X29 command. Section 4.1 and Section 4.2 describe how to use the qualifiers to control the host–based PAD and the connection between the X.25 for OpenVMS host–based PAD and the remote DTE. Section 4.3 provides a summary of the qualifiers for the SET HOST/X29 command.

4.1 Setting the Characteristics of the Host–Based PAD

This section describes how to set the characteristics of the X.25 for OpenVMS host–based PAD when you use the SET HOST/X29 command.

4.1.1 Setting PAD Parameters

You can specify the values of PAD parameters for a SET HOST/X29 session by:

- Setting individual parameters.
- Specifying one or more PAD parameter profiles, which specify values for specific parameters. This is useful if you regularly need to set certain PAD parameters to specific values, for example, to access a non–OpenVMS system.
- Specifying a mixture of PAD parameter profiles and individual parameters. This facility is useful if you want to override parameter values specified in a profile.

Note that if the remote DTE is an OpenVMS system, some PAD parameters must have certain values for the NV device to operate normally. Refer to Table A–1 for details of the required PAD parameter values.

4.1.1.1 Setting Individual Parameters

To set individual parameters, use the following qualifier:

/PARAMETERS=(parameter-list)

The variable parameter-list is a list of parameter keywords and their associated values. If you specify a parameter, but no value, that parameter is set to 1.

For example, to connect to a DTE called PARIS, setting TIMEOUT to 10, WRAP to 0, and DELETE to 1, enter:

$ SET HOST/X29/PARAMETERS=(TIMEOUT=10,NOWRAP,DELETE) PARIS

For details of the PAD parameters and their values, refer to Chapter 10.
Controlling the Connection to the Remote DTE
4.1 Setting the Characteristics of the Host–Based PAD

4.1.1.2 Using a PAD Parameter Profile
PAD parameter profiles are lists of settings for certain PAD parameters. The PAD profiles for your system are in the profile file SYS$MANAGER:PSI$PAD_PROFILES.DAT.

The profiles are usually created by your system manager, and are available for you to use within your PAD session.

You can also create your own PAD parameter profiles. You may want to do this if you frequently use a set of parameters for which there is no system–wide profile. Creating a profile is described in Section 3.3.2.

To specify one or more PAD parameter profiles, use the following qualifier:

PROFILE=profile-list

The variable profile-list is a list of PAD profiles. For example, to connect to a DTE called PARIS, using two profiles called MACHINE_2 and SYSTEM_A, enter:

$ SET HOST/X29/PROFILE=(MACHINE_2,SYSTEM_A) PARIS

Note that X.25 for OpenVMS processes the profiles in the order in which you specify them in the profile list. Therefore in the example above, if MACHINE_2 and SYSTEM_A specify different values for the same parameter, the value from SYSTEM_A is used, because SYSTEM_A was specified last and therefore overrides the value of the corresponding parameter set by MACHINE_2.

4.1.1.3 Specifying PAD Profiles and Individual Parameters
To specify a mixture of PAD profiles and individual parameters, use both the /PARAMETERS and /PROFILE qualifiers. For example, to connect to a DTE called PARIS, using the profile SYSTEM_A and specifying TIMEOUT as 10 and WRAP as 0, enter:

$ SET HOST/X29/PROFILE=SYSTEM_A/PARAMETERS=(TIMEOUT=10,NOWRAP) PARIS

4.1.2 Setting the Escape Character
You use the Escape character to disconnect from the remote terminal and enter PAD command mode. The Escape character is controlled by:

• Specifying the Escape character you are going to use (if any). Use the /PARAMETERS qualifier as described in Section 4.1.2.1 to specify the Escape character.

• Setting a value for the default Escape character. Use the /DEFAULT_ESCAPE_CHARACTER qualifier as described in Section 4.1.2.2 to set the Escape character.

4.1.2.1 Specifying the Escape Character
To specify the Escape character you are going to use (if any), use the qualifier /PARAMETERS, listing the ESCAPE_CHARACTER parameter. The value assigned to the ESCAPE_CHARACTER parameter specifies whether you use:

• The default Escape character. To use the default Escape character, set ESCAPE_CHARACTER to 1.

• An alternative Escape character which you specify with the ESCAPE_CHARACTER parameter. Refer to Chapter 10 for details of the values you can use.
• No Escape character. To specify no Escape character, set ESCAPE_CHARACTER to 0.

If you do not specify a value for the ESCAPE_CHARACTER parameter, the default Escape character is assumed.

4.1.2.2 Setting the Default Escape Character

You can set the default Escape character to a particular value (for example, if you want to use the current default Escape character for another purpose). To do this, use the following qualifier:

/DEFAULT_ESCAPE_CHARACTER=character

If you do not specify a default Escape character, the default Escape character is set to Ctrl/P.

You need to set an alternative default Escape character for your session if you are:

• Accessing the PAD from a console terminal (if you are using a system console terminal, you can only use Ctrl/P if you set the terminal to LOCAL_DISABLE. Otherwise, you must not use Ctrl/P).

• Using a networking product that uses Ctrl/P for another purpose.

To set a default Escape character, specify the character as a single letter that represents a control character. For example, to specify Ctrl/J as the default Escape character for your session on PARIS, enter:

$ SET HOST/X29/DEFAULT_ESCAPE_CHARACTER=J PARIS

Care should be taken when choosing a character as the default Escape character. For example, when used in combination with the Ctrl key, the characters S and Q are used for X-OFF and X-ON, and the “|” character is the ASCII escape character used in escape sequences.

4.1.3 Setting a Break Character

You can set a control character to have the same effect in your SET HOST/X29 session as the Break key on a real X.29 terminal. To do this, use the following qualifier:

/BREAK_CHARACTER=character

The variable character is a single letter that represents the control character.

For example, to use Ctrl/K as the Break key while you are connected to a DTE called PARIS, enter:

$ SET HOST/X29/BREAK_CHARACTER=K PARIS

4.1.4 Using the PAD in OpenVMS Mode

To optimize communication with the remote DTE, you can use the PAD in OpenVMS mode. To set the PAD to OpenVMS mode, use the following qualifier:

/VMS_MODE

Note that when you are using the host–based PAD in OpenVMS mode, if your X.29 terminal is in local–echo mode, you will have the following facilities which are not available in host–echo mode:

• Full line editing for the OpenVMS terminal driver is available locally.
Controlling the Connection to the Remote DTE
4.1 Setting the Characteristics of the Host–Based PAD

- The DELETE, LINE_DELETE and REDISPLAY_LINE parameters are ignored.
- If you use Ctrl/Y or Ctrl/X, a Reset will precede the character.

4.1.5 Controlling Access to the Command Language
If you include the SET HOST/X29 command in a command procedure, you can prevent users of the procedure from using the command language of the remote system, by controlling access to the command language interpreter. This is useful, for example, if you are writing a command procedure to be used by a captive account, and do not want users of that account to use the command language.

To prevent access to the command language, use the following qualifier:

/NOCLI

This will disable the PAD spawn command, and prevent users from having access to the command language. (Note that /NOCLI does not disable the ATTACH command.)

4.1.6 Logging Your Session
You can log your SET HOST/X29 session. To do this, use the following qualifier:

/LOG=log-file

The variable log-file is the name of the file you want the log written to. If you do not specify a log file, the log will be written to PSIPAD.LOG in your default directory.

Note that to indicate that the logging refers specifically to a SET HOST/X29 session, you must enter /LOG after /X29 in the SET HOST/X29 command.

There are two types of log file that you can create for your session: NETWORK and TERMINAL. Section 3.4 describes the NETWORK and TERMINAL log files, and describes how to specify which type you want to create. The default is TERMINAL.

4.1.7 Displaying Call Statistics
When you return to your host system, information about the PAD session is displayed on your terminal. This information includes the duration of your call and CPU time used. To suppress this display, use the following qualifier:

/NOSTATISTICS

4.2 Setting the Characteristics of the Connection to the Remote DTE
When you connect to a remote terminal, you can add qualifiers to the SET HOST/X29 command to set the characteristics of the connection between the X.25 for OpenVMS host–based PAD and the remote DTE. This can be achieved by specifying individually the characteristics you want to set. This procedure is described in Section 4.2.1 to 4.2.9.

Note that if you do not specify a DTE class and DTE address in the SET HOST/X29 command, X.25 for OpenVMS uses the X29Login template on OpenVMS I64 and OpenVMS Alpha systems or the Default template on OpenVMS VAX systems. In addition, any characteristics you specify using a qualifier will override the value specified in the X29Login or Default template.
Controlling the Connection to the Remote DTE

4.2 Setting the Characteristics of the Connection to the Remote DTE

Note that the availability of the facilities described in Sections 4.2.1 to 4.2.9 depends on the network you are using. For details of the facilities supported by a specific network, see the documentation supplied by your network provider.

4.2.1 Using a Local Subaddress

If you want to tell the remote system that your connection comes from a specific subaddress, you can add the local subaddress to a DTE address. To do this, use the following qualifier:

/SUBADDRESS=string

The variable string specifies the subaddress for the local DTE.

4.2.2 Connecting to a DTE Within a Closed User Group

You can specify a closed user group for the remote DTE. To do this, use the following qualifier:

/CLOSED_USER_GROUP[=string]

The variable string is the name of the closed user group. The DTE address at the end of your command line will be considered as the address of a DTE within the closed user group.

Note that if you add the qualifier /CLOSED_USER_GROUP, but do not specify a particular closed user group, the address of the remote DTE you specify at the end of the SET HOST/X29 command line will be used as the name of the closed user group.

4.2.3 Sending User Data

You can specify a string of user data to send to the remote DTE when the call is established. To do this, use the following qualifier:

/USER_DATA=string

The variable string is a string of up to 12 bytes of user data. Note that you can send up to 124 bytes of user data if you use the fast select facility (see Section 4.2.4).

The user data is put into the call in ASCII, and follows the 4–byte protocol identifier (specified by the /PROTOCOL_IDENTIFIER qualifier).

4.2.4 Using Fast Select

You can increase the maximum size of the User Data field from 12 to 124 bytes by requesting fast select. To do this, use the following qualifier:

/FAST_SELECT

4.2.5 Specifying Packet Size and Window Size

You can request a specific packet size and window size for the SET HOST/X29 session. To do this, use the following qualifiers:

/PACKET_SIZE=number

/WINDOW_SIZE=number

• For packet size, number is the packet size, and number must be:
 – Between 16 and 4096
 – A power of 2
Controlling the Connection to the Remote DTE

4.2 Setting the Characteristics of the Connection to the Remote DTE

Note that the maximum packet size that can be defined is determined by the network being used.

- For window size, number is the window size. The size specified must be in the range 1–7, or 1–127 if extended sequence numbering is being used. Note that the availability of extended sequence numbering is determined by the network being used and your subscription options.

Note that if you request a packet size or window size that is not allowed for your network, the value may be altered to a legal value by the network, the remote DTE, or X.25 for OpenVMS.

If you do not specify a packet size or window size, the network defaults will be used.

4.2.6 Using Reverse Charging

You can request reverse charging on a call packet sent to a remote DTE. To do this, use the following qualifier:

/REVERSE_CHARGING

4.2.7 Requesting a Throughput Class

You can request a particular throughput class in the call packet. To do this, use the following qualifier:

/THRUPUT_CLASS=number

The variable number is the number of the throughput class.

4.2.8 Specifying Local Facilities

You can specify local facilities that are not covered by the X.25 for OpenVMS software. To do this, use the following qualifier:

/LOCAL_FACILITIES=facilities-list

The variable facilities-list is a list of entries in the local facilities field of the network connect block (NCB). Note that you must encode entries in facilities-list according to the CCITT X.25 Recommendations.

For further details of the NCB, see the HP X.25 for OpenVMS—Programming Guide and the HP X.25 for OpenVMS—Programming Reference manual.

Note that this field is not checked, and that the network may reject your call if you specify an invalid facility.

4.2.9 Using a Nonstandard X.29 Protocol Identifier

You can put a non–standard X.29 protocol identifier into the protocol identifier field of your call. To do this, use the following qualifier:

/PROTOCOL_IDENTIFIER=string

The variable string will be interpreted as a series of hexadecimal digits that fill the first four bytes of user data in the call packet.

For details of the values which are valid for a particular remote DTE, see your network manager.
4.3 Summary of the SET HOST/X29 Command Qualifiers

The following sections list the SET HOST/X29 command qualifiers, with a summary of their defaults and uses. Table 4–1 lists the command qualifiers you can use to control the host–based PAD. Table 4–2 lists the command qualifiers you can use to control the connection between the host–based PAD and the remote DTE.

Table 4–1 SET HOST/X29 Qualifiers Which Control the PAD

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BREAK_CHARACTER=character</td>
<td>Sets up a control character to represent the BREAK command.</td>
</tr>
<tr>
<td>/NOBREAK_CHARACTER †</td>
<td>Uses the PAD in CCITT X.28 mode.</td>
</tr>
<tr>
<td>/CCITT †</td>
<td>Use the PAD in CCITT X.28 mode.</td>
</tr>
<tr>
<td>/NOCCITT †</td>
<td>NOCCITT disables the PAD SPAWN command (but not the ATTACH command).</td>
</tr>
<tr>
<td>/CLI †</td>
<td>/NOCLI specifies the default escape character. The default is Ctrl/P.</td>
</tr>
<tr>
<td>/DEFAULT_ESCAPE_CHARACTER=character</td>
<td>Specifies the default escape character. The default is Ctrl/P.</td>
</tr>
<tr>
<td>/LOG=file</td>
<td>Sets up a log of the SET HOST/X29 session. If you use this qualifier, you must enter it after the /X29 qualifier, to indicate you specifically want to log the SET HOST/X29 session.</td>
</tr>
<tr>
<td>/NOLOG †</td>
<td>Sets up a log of the SET HOST/X29 session. If you use this qualifier, you must enter it after the /X29 qualifier, to indicate you specifically want to log the SET HOST/X29 session.</td>
</tr>
<tr>
<td>/PARAMETERS=(parameters-list)</td>
<td>Specifies values for individual PAD parameters. See Chapter 10 for details of the PAD parameters and their values.</td>
</tr>
<tr>
<td>/NOPARAMETERS †</td>
<td>Specifies values for individual PAD parameters. See Chapter 10 for details of the PAD parameters and their values.</td>
</tr>
<tr>
<td>/PROFILE=profile-list</td>
<td>Specifies one or more PAD parameter profiles.</td>
</tr>
<tr>
<td>/NOPROFILE †</td>
<td>Specifies one or more PAD parameter profiles.</td>
</tr>
<tr>
<td>/STATISTICS †</td>
<td>Shows the duration of the PAD session at the end of the call.</td>
</tr>
<tr>
<td>/NOSTATISTICS</td>
<td>Shows the duration of the PAD session at the end of the call.</td>
</tr>
</tbody>
</table>

†This is the default value.
4.3 Summary of the SET HOST/X29 Command Qualifiers

Table 4–1 (Cont.) SET HOST/X29 Qualifiers Which Control the PAD

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/VMS_MODE</td>
<td>Causes the PAD to enter OpenVMS mode. This qualifier applies to OpenVMS systems only.</td>
<td></td>
</tr>
<tr>
<td>/NOVMS_MODE †</td>
<td></td>
<td>†</td>
</tr>
</tbody>
</table>

†This is the default value.

Table 4–2 SET HOST/X29 Qualifiers Which Control the Connection

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CLOSED_USER_GROUP=string</td>
<td>Specifies the name of a closed user group.</td>
<td></td>
</tr>
<tr>
<td>/NOCLOSED_USER_GROUP †</td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>/FACILITIES=facilities-list</td>
<td>Specifies a list of facilities for the local facilities field in the network connect block (NCB).</td>
<td></td>
</tr>
<tr>
<td>/NOFACILITIES †</td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>/FAST_SELECT</td>
<td>Makes the call with fast select.</td>
<td></td>
</tr>
<tr>
<td>/NOFAST_SELECT †</td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>/PACKET_SIZE=number</td>
<td>Requests a specified packet size in the call packet. The packet size must be:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Between 16 and 4096</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A power of 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Note following table.</td>
<td></td>
</tr>
<tr>
<td>/NO PACKET_SIZE †</td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>/PROTOCOL_IDENTIFIER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PROTOCOL_IDENTIFIER=''01'' †</td>
<td>Puts a nonstandard X.29 protocol identifier into the protocol identifier field of the call.</td>
<td></td>
</tr>
<tr>
<td>/REVERSE_CHARGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/NOREVERSE_CHARGING †</td>
<td>Requests reverse charging.</td>
<td></td>
</tr>
</tbody>
</table>

†This is the default value.

(continued on next page)
Table 4–2 (Cont.) SET HOST/X29 Qualifiers Which Control the Connection

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SUBADDRESS=number</td>
<td>Specifies a local subaddress in the local outgoing call.</td>
</tr>
<tr>
<td>/NOSUBADDRESS †</td>
<td></td>
</tr>
<tr>
<td>/THRUPUT_CLASS=number</td>
<td>Requests a specified throughput class in the call packet.</td>
</tr>
<tr>
<td>/NOTHRUPUT CLASS †</td>
<td></td>
</tr>
<tr>
<td>/USER_DATA=string</td>
<td>Specifies a string of user data to send to the remote DTE (normally up to 12 bytes, up to 124 bytes if fast select is used).</td>
</tr>
<tr>
<td>/NOUSER_DATA †</td>
<td></td>
</tr>
<tr>
<td>/WINDOW_SIZE=number</td>
<td>Requests a window size in the range 1–127. See Note following table.</td>
</tr>
<tr>
<td>/NOWINDOW_SIZE†</td>
<td></td>
</tr>
</tbody>
</table>

†This is the default value.

Note

If the window size or packet size you request are not supported by your network, the value you request will be altered to a value that is supported by the network.
Using PAD Commands to Control the Host–Based PAD

This chapter describes how to use PAD commands to control the X.25 for OpenVMS host–based PAD and modify its characteristics while you are using it to communicate with a remote DTE. Figure 5–1 illustrates your connection to the remote system, by means of the host–based PAD.

To change the characteristics of the host–based PAD, you must enter PAD command mode and use PAD commands to change the PAD parameters.

This chapter tells you how to:

• Enter and leave PAD command mode (Sections 5.1 and 5.2).
• Control a PAD session (Section 5.3).
• Change the characteristics of the host–based PAD within a PAD session (Section 5.4).
• Examine the characteristics of the host–based PAD within a PAD session (Section 5.5).

Section 5.6 provides a summary of the PAD commands you can use to control a PAD session and to change the characteristics of the host–based PAD.
5.1 Entering PAD Command Mode

To enter PAD command mode, press the Escape character. The default Escape character is \[\text{Ctrl/P}\] but if you have set a different Escape character for your session, use that character. (Section 4.1.2 describes how to set an Escape character when you connect to a remote system.) If there is no Escape character defined, press \[\text{Ctrl/Y}\] twice.

5.2 Leaving PAD Command Mode

5.2.1 Returning to Your SET HOST/X29 Session

To return to your session on the remote DTE, perform one of the following actions:

- Enter the PAD command CONTINUE.
- Enter the PAD command EXIT.
- Press \[\text{Ctrl/Z}\].

5.2.2 Clearing Your Call

To clear your call, enter the command CLEAR.

Note that the remote DTE can clear your call. If this happens, you have no way of letting the call continue.

5.3 Controlling a PAD Session

This section describes how you can use the PAD commands to control a PAD session.

You can request online help at any time by entering:

\[\text{PAD> HELP}\]

5.3.1 Creating a Subprocess

The host–based PAD allows you to create a subprocess without leaving the first process. The PAD command is similar to the DCL SPAWN command:

\[\text{PAD> SPAWN [command] [qualifiers]}\]

The variable \textit{command} is a command string of up to 132 characters. If you specify a command, the subprocess will execute the command and return to your PAD session.

You can add qualifiers to the SPAWN command to:

- Execute a command file –

 To execute a command file in the subprocess, use the following qualifier:

 \[/\text{INPUT}=\text{file}\]

 The variable \textit{file} specifies the command file. The subprocess will execute the command file, and return to your PAD session. If you specify a command string in addition to the command file, the command string will be processed before the file.

- Write the results of a SPAWN operation to a file –

 To write the results of a SPAWN operation to a file, use the following qualifier:

 \[/\text{OUTPUT}=\text{file}\]
• Return to the PAD while the subprocess is running—

By default, the system waits until the subprocess in completed before returning you to the PAD.

To return to the PAD while the subprocess is running, use the following qualifier:

/NOWAIT

The /NOWAIT qualifier should be used only if the /INPUT qualifier is specified. This combination of qualifiers ensures that only one process reads from the terminal at any given point in time.

If you use the /NOWAIT qualifier interactively, you must make sure that the output from both the parent process and the subprocess do not appear on your terminal at the same time. To do this, ensure that you:

– Use the /OUTPUT qualifier.
– Do not specify SYS$COMMAND as the output file.

• Specify a name for the subprocess –

To specify a unique name for the subprocess, use the following qualifier:

/PROCESS=subprocess-name

If you specify a process name that already exists, an error message will be displayed.

If you do not add this qualifier, a unique process name will be generated from your user name and the number of your process; for example, if you are user DUKE and the process is your first, the default subprocess name will be DUKE_1.

• Control copying of logical names and DCL symbols to the subprocess –

By default, the SPAWN command copies to the subprocess all the logical names and logical name tables (except for those explicitly marked CONFINE or those created in executive or kernel mode) and DCL symbols associated with the process. The /[NO]LOGICAL_NAMES and /[NO]SYMBOLS qualifiers allow you to control whether or not the logical names and DCL symbols are copied to the subprocess.

If you do not want the logical names to be copied to your subprocess, use the following qualifier:

/NOLOGICAL_NAMES

If you do not want the DCL symbols to be copied to your subprocess, use the following qualifier:

/NOSYMBOLS

For example, to create a subprocess called FRED and write the results of FRED to a file called FRED.TXT, enter the following command:

PAD> SPAWN/PROCESS=FRED/OUTPUT=FRED.TXT
5.3 Controlling a PAD Session

5.3.2 Attaching to a Specified Process

You can attach your terminal to a specified process by using the ATTACH command. For example, if you have previously spawned a process, you can use the ATTACH command to return to that process.

Use the ATTACH command in one of the following ways:

PAD> ATTACH process-name
PAD> ATTACH/IDENTIFICATION=pid

where process-name and pid are the process name and the process identification (PID) of the process you want to attach to. For example, to attach your terminal to a process called HARRY, enter the following command:

PAD> attach harry

5.3.3 Defining and Deleting Keys

During the PAD session you can define and delete keys in the same way as you do with DCL. Your key definitions will last until you terminate the PAD session.

5.3.3.1 Defining a Key

To define a key, enter the following command:

PAD> DEFINE/KEY key-name "equivalence-string" [qualifiers]

where key-name is the name of the key you wish to define, and equivalence-string corresponds to the command you want the key to perform.

You can add qualifiers to the DEFINE/KEY command to:

• Specify a state for the key you are defining –
 To associate a state with the key you are defining, use the following qualifier:

 /SET_STATE=state-name

 The variable state-name can be any alphanumeric string. If you omit or negate this qualifier, the current state remains unchanged. Refer to the OpenVMS general user documentation for further details of this qualifier.

• Retain the state you have specified –
 To retain the state you specify with the /SET_STATE qualifier, use the following qualifier:

 /LOCK_STATE

• Specify a state which must be set to enable the key definition –
 To specify a list of states, any one of which must be set for the key definition to work, use the following qualifier:

 /IF_STATE=(state-name[,...])

 If you omit or negate this qualifier, the current state will be used. Refer to the OpenVMS general user documentation for further details of this qualifier.

• Choose whether the equivalence string is echoed after you press the defined key –
 To specify whether the equivalence string is echoed after you press the defined key, use the following qualifier:

 /[NO]ECHO

 Refer to the Note at the end of this section.
• Choose whether you need to press [Return] as well as the defined key to execute the command –

To choose whether the key you define includes a [Return] or whether you need to follow the defined key with [Return], use the following qualifier:

/\[NO\]TERMINATE

By default, the key you define will not include [Return].

If you want to press [Return] in addition to the defined key to execute the command, add /NOTERMINATE to the DEFINE/KEY command.

Note

You cannot specify both /NOECHO and /NOTERMINATE when you define a key.

5.3.3.2 Deleting a Key Definition

To delete a key definition, enter the PAD DELETE/KEY command as follows:

• To delete a **specific key definition**, enter the following command:

 \[
 \text{PAD} > \text{DELETE/KEY key-name [/STATE=state-name]}
 \]

 where the /STATE qualifier specifies the state for which you want the key definition to be deleted. If you omit or negate the /STATE qualifier, the key definition will be deleted in the current state.

• To delete **all the key definitions** for a particular state, enter the following command:

 \[
 \text{PAD} > \text{DELETE/KEY [/STATE=state-name]}
 \]

 This command deletes all the key definitions in the state you specify. If you omit or negate the /STATE qualifier, only key definitions in the current state will be deleted.

5.3.4 Sending an Interrupt to the Remote DTE

To send an Interrupt to the remote DTE, use the following command:

\[
\text{PAD} > \text{INTERRUPT [data] [qualifier]}
\]

where \textit{data} is a decimal number. If you do not specify a value for \textit{data}, \textit{data} will be set to 1.

You can make the PAD discard output from the remote DTE. To do this, use the following qualifier:

/\text{DISCARD}

By default, the PAD does not discard output from the remote DTE.

The effect of the interrupt on the remote DTE will depend on how the DTE is set up. For example, if the DTE is running X.25 for OpenVMS, the default is to treat the Interrupt as [Ctrl+C].

Note that you cannot send a second Interrupt before the remote DTE and the PAD have completed handling the previous Interrupt. If you try to do this, the PAD will display:

%PAD-W-WARNINT, Previous interrupt incomplete
5.3.5 Sending a Reset to the Remote DTE

If you want to reset the virtual circuit between the PAD and the remote DTE (for example, if the line is slow), use the following command:

```
PAD> RESET [diagnostic]
```

where `diagnostic` consists of a decimal number between 0 and 255, which is placed in the Diagnostic field of the Reset.

Note that:

- When you send a Reset, you may lose some of the data being transferred between the PAD and the remote DTE.
- You cannot send a second Reset before the remote DTE and the PAD have completed handling the previous Reset. If you try to do this, the PAD will display:

 `%PAD-W-WARNRES, Previous reset incomplete`

5.3.6 Executing a File of PAD Commands

If you want to execute a sequence of PAD commands repeatedly (for example, every time you use the PAD) you will find it useful to execute the commands in a command file. You can execute a file of PAD commands by using the following command:

```
PAD> @file
```

where `file` is the name of the file you want to execute. The file type defaults to .COM.

For example, to execute a sequence of PAD commands in a file called `BOB.COM`, enter the following command:

```
PAD> @BOB
```

Note that if you place the EXIT command in the command file, the file will finish processing at the EXIT command.

5.4 Changing the PAD Characteristics

This section describes how to change the characteristics of a host–based PAD.

5.4.1 Changing PAD Parameters

You can change the values of the PAD parameters during a SET HOST/X29 session, by doing one of the following:

- Changing individual parameters.
- Specifying one or more PAD parameter profiles, which set the values for certain parameters. This facility is useful if you regularly need to set PAD parameters to specific values, for example, to access a non–OpenVMS system.
- Specifying a mixture of PAD parameter profiles and changing individual parameters. This facility is useful if you want to set parameters to the values specified in a profile, and also set values for other parameters.

Note that if the remote DTE is an OpenVMS system, certain PAD parameters must have specific values for the NV device to operate normally. For details of the required PAD parameter values refer to Table A–1.
5.4 Changing the PAD Characteristics

5.4.1 Changing the Values of Individual Parameters

To change the values of individual parameters, use the following command:

PAD> SET PARAMETERS parameter-value-list

where parameter-value-list is a list of parameters and parameter values. You can express each parameter in one of two ways:

- The parameter keyword, for example, TIMEOUT
- The parameter number, for example, 4 (the TIMEOUT parameter)

You can also mix the two formats on the same command line. The command line can contain any number of parameters (and associated value), but where more than one parameter is specified, each parameter must be separated from the next with a comma.

If you specify a keyword, but no value, the parameter will be set to 1. If you put NO in front of the keyword (for example, NOTIMEOUT), the parameter will be set to 0.

For example, to set TIMEOUT to 10, FORWARDING_CHARACTERS to 0, and DELETE to 1, enter the following command:

PAD> SET PARAMETERS TIMEOUT=10, NOFORWARDING_CHARACTERS, DELETE

Alternatively, you could enter the following:

PAD> SET PARAMETERS 4=10, 3=0, 16

This command is equivalent because TIMEOUT, FORWARDING_CHARACTERS and DELETE are parameters 4, 3, and 16, respectively.

For further details of the PAD parameters and their values, refer to Chapter 10.

5.4.1.2 Using a PAD Parameter Profile

PAD parameter profiles are lists of settings for certain PAD parameters. The PAD profiles for your system are defined in the profile file SYS$MANAGER:PSI$PAD_PROFILES.DAT. They are usually created by the system manager, and are available for you to use within your PAD session.

You can create your own PAD parameter profiles for sets of parameters that you frequently use. Section 3.3.2 describes how to do this.

To set the PAD parameters to values contained in one or more profiles, use the following command:

PAD> SET PROFILE profile-name

where profile-name is the name of the PAD profile you want to use.

For example, to reset the PAD parameters to the values in a profile called MACHINE_2, enter the following command:

PAD> SET PROFILE MACHINE_2

Note that the profile name you use must exactly match the name specified in the profile file; do not use any abbreviations.

You can also use the SET PROFILE command to reset the PAD parameters to their default values (that is, the initial PAD profile). To do this, enter the following command:

PAD> SET PROFILE/INITIAL
Details of the initial PAD profile are in Appendix B.

5.4.1.3 Using PAD Profiles and Resetting Individual Parameters
To specify a mixture of PAD profiles and individual parameters, use the SET PROFILE command to specify the profiles you want to use, then use the SET PARAMETERS command to specify individual parameters.

Note that if you want to use a particular profile, but set one of the parameters in that profile to a different value, you must issue the SET PROFILE command first, followed by the SET PARAMETERS command, to reset the individual parameter.

5.4.2 Changing the Escape Character
You use the Escape character to disconnect from the remote terminal and enter PAD command mode. The Escape character is controlled by:

• Specifying the Escape character you are going to use (if any). Use the SET PARAMETERS command as described in Section 5.4.2.1 to do this.

• Setting a value for the default Escape character. Use the SET DEFAULT_ESCAPE_CHARACTER as described in Section 5.4.2.2 to do this.

5.4.2.1 Specifying the Escape Character
To specify the Escape character you are going to use (if any), issue the command:

```
PAD> SET PARAMETERS ESCAPE_CHARACTER=[value]
```

where `value` is a single character.

The ESCAPE_CHARACTER parameter specifies whether you use:

• The default Escape character –
 To use the default Escape character, set ESCAPE_CHARACTER to 1.

• An alternative Escape character –
 Specify an alternative escape character with the ESCAPE_CHARACTER parameter. Refer to Appendix A for details of the values you can use.

• No Escape character –
 To specify no Escape character, set ESCAPE_CHARACTER to 0.

If you do not specify a value for the ESCAPE_CHARACTER parameter, the Escape character is set to the default Escape character.

5.4.2.2 Changing the Default Escape Character
If you want to change the default Escape character to a new value (for example, if you want to use the current default Escape character for another purpose), enter the following command:

```
PAD> SET [NO]DEFAULT_ESCAPE_CHARACTER [character]
```

where `character` is a single letter that represents a control character.

For example, to change the default Escape character for your session to Ctrl/J, enter the following command:

```
PAD> SET DEFAULT_ESCAPE_CHARACTER J
```

The default for the default Escape character is Ctrl/P. Note that you cannot use Ctrl/P if you are accessing the PAD from a console terminal, or using a network product that uses Ctrl/P for some other purpose.
5.4 Changing the PAD Characteristics

Care should be taken when choosing a character as the default Escape character. For example, when used in combination with the \[Ctrl\] key, the characters S and Q are used for X-OFF and X-ON, and the \["\] character is the ASCII escape character used in escape sequences.

5.4.3 Setting or Changing the Break Character

You can set a control character to have the same effect in your SET HOST/X29 session as the Break key on a real X.29 terminal. To do this, use the command:

```
PAD> SET BREAK_CHARACTER character
```

where `character` is a single letter that represents a control character. For example, to use \[Ctrl/K\] as the Break key, enter the following command:

```
PAD> SET BREAK_CHARACTER K
```

To delete a Break character definition, enter the following command:

```
PAD> SET NOBREAK_CHARACTER
```

You can also use the SET BREAK command to change an existing Break key to a new key. To do this, enter the following commands:

```
PAD> SET NOBREAK_CHARACTER
PAD> SET BREAK.Character character
```

where `character` represents the control character for the new Break key.

5.4.4 Using the PAD in OpenVMS Mode

To optimize communication with the remote DTE, you can use the PAD in OpenVMS mode. To do this, enter the following command:

```
PAD> SET VMS_MODE
```

Note that you can only use this qualifier if the remote DTE is on an OpenVMS VAX system running VAX P.S.I. V3.0 or later, or an OpenVMS I64 or OpenVMS Alpha system running X.25 for OpenVMS.

Note that if your X.29 terminal is in local–echo mode, you will have the following facilities which are not available in host–echo mode:

- Full line editing for the OpenVMS terminal driver is available locally.
- The DELETE, LINE_DELETE and REDISPLAY_LINE parameters are ignored.
- If you use \[Ctrl/Y\] or \[Ctrl/X\], a Reset will precede the character.

5.4.5 Starting and Stopping a Log of Your SET HOST/X29 Session

To start a log of your session on the remote terminal, enter the following command:

```
PAD> SET LOG_FILE file [qualifier]
```

where `file` is the name of the file you want the log written to. If you do not specify a log file, the log will be written to PSIPAD.LOG in your default directory.

To end the log, enter the following command:

```
PAD> SET NOLOG_FILE
```
Using PAD Commands to Control the Host–Based PAD
5.4 Changing the PAD Characteristics

There are two types of log file you can use: NETWORK and TERMINAL. You need to specify the type of log file you want to use when you issue the SET HOST/X29 command. Section 3.4 describes the NETWORK and TERMINAL log file types, and describes how to specify the type you want.

The default log file type is TERMINAL.

You can control whether or not the records in the log file are time-stamped and/or marked as they are received or transmitted. To do this, use the following qualifier:

/STAMP=value

The variable value can be:

• ALL—the records will be time-stamped and marked as they are received or transmitted;
• NONE—the records will be neither time-stamped nor marked as they are received or transmitted;
• TIME—the records will be time-stamped as they are received or transmitted; or
• SENSE—the records will be marked as being either received or transmitted.

The default is /STAMP=SENSE.

Note that if you are using the TERMINAL type of log file the /STAMP qualifier has no effect.

5.4.6 Changing the PAD Prompt

To change the prompt for the PAD in command mode, enter the following command:

PAD> SET PROMPT prompt-string [qualifier]

The default, which is set unless you specify a prompt, is PAD>.

You can control whether carriage and line feed characters are inserted before the prompt string. To do this, use the following qualifier:

/[NO]CARRIAGE_CONTROL

The default is /CARRIAGE_CONTROL.

5.4.7 Sending a File to the Remote DTE

You can send a file to the remote DTE, which the remote DTE will see as though the characters in the file were being typed on the terminal. For example, you can issue a DCL command, such as DIRECTORY, on the remote system.

To send a file to the remote DTE, enter the following command:

PAD> SET INPUT file [qualifier]

The variable file is the name of the file you want to send.

You can limit the maximum rate at which the file will be sent. To do this, use the following qualifier:

/SPEED=number

The variable number is the baud rate at which the file will be sent to the remote DTE. If you omit this qualifier, the data will be sent as rapidly as possible.
Note that:

• When you use SET INPUT, make sure the X.29 terminal has HOSTSYNC enabled in order to prevent the remote node receiving data too quickly. To enable HOSTSYNC, enter the DCL command:

 \$ \texttt{SET TERMINAL/HOSTSYNC}

• When you use SET INPUT to read an RMS file, records longer than 512 bytes will be truncated, so you may lose data from this type of file.

5.5 Displaying the Characteristics of the Host–Based PAD

During a PAD session, you can examine the present settings of the PAD parameters and other information about the PAD and your use of it.

To see information about the PAD, use the PAD SHOW command. This command allows you to examine:

• The PAD parameters –
 To display the values of all 22 PAD parameters issue the command:
 \[\text{PAD}> \texttt{SHOW PARAMETERS} \]

 To display selected PAD parameters issue the command:
 \[\text{PAD}> \texttt{SHOW PARAMETERS [parameter-list]} \]
 where \texttt{parameter-list} is a list of the keywords or numbers of the parameters you want to see.

 You can add the qualifier /NUMERIC to display the parameter numbers instead of their names.

• The parameter settings contained in a profile –
 \[\text{PAD}> \texttt{SHOW PROFILE profile-name} \]

• The parameter settings contained in the PAD initial profile –
 \[\text{PAD}> \texttt{SHOW PROFILE/INITIAL} \]

• The control character you are using as the default Escape character –
 \[\text{PAD}> \texttt{SHOW DEFAULT_ESCAPE_CHARACTER} \]

• The control character (if any) you are using as the Break character –
 \[\text{PAD}> \texttt{SHOW BREAK_CHARACTER} \]

• Whether OpenVMS mode is enabled –
 \[\text{PAD}> \texttt{SHOW VMS_MODE} \]

 This command will also display whether the PAD is in local–echo or host–echo mode.

• The name of the log file (if any) that contains a copy of the data you have sent or received during the PAD session—
 \[\text{PAD}> \texttt{SHOW LOG_FILE} \]

• The PAD prompt –
 \[\text{PAD}> \texttt{SHOW PROMPT} \]
Using PAD Commands to Control the Host–Based PAD
5.5 Displaying the Characteristics of the Host–Based PAD

- The name of the file you are sending to the remote DTE (if any) –
 PAD> SHOW INPUT

- Your keypad definitions –
 PAD> SHOW KEY [key-name] [/STATE=(state-name)]
 This command will display your keypad definitions. If you want to see the
definition of a particular key, or the keypad definitions for a particular state,
specify the key-name or state-name, respectively.

- Information about the elapsed time of the call –
 PAD> SHOW STATISTICS
 This command presents the CPU time used, number of page faults, and
 buffered and direct I/O counts for the elapsed time of the call.

- All the PAD settings –
 PAD> SHOW ALL
 This command presents the output of the following SHOW commands (in the
 order shown): PARAMETERS, DEFAULT_ESCAPE_CHARACTER, LOG_FILE, STATISTICS, PROMPT, VMS_MODE, and BREAK_CHARACTER.
5.6 Summary of PAD Commands

The following tables list the PAD commands, with a summary of their defaults and uses. Table 5–1 lists the commands you use to control a PAD session, Table 5–2 lists the commands which change the PAD parameters, and Table 5–3 lists the commands you use to examine the characteristics of the PAD. The PAD commands are listed in alphabetical order within each table.

Table 5–1 Commands Used to Control a PAD Session

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTACH</td>
<td>Attaches your terminal to a specified process. Specify either process-name or process-id.</td>
</tr>
<tr>
<td>BREAK</td>
<td>Simulates pressing the Break key.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Clears a call.</td>
</tr>
<tr>
<td>CONTINUE</td>
<td>Returns the PAD to data-transfer mode.</td>
</tr>
<tr>
<td>DEFINE/KEY</td>
<td>Defines a key. The defaults are:</td>
</tr>
<tr>
<td></td>
<td>/ECHO</td>
</tr>
<tr>
<td></td>
<td>state-name=current state</td>
</tr>
<tr>
<td></td>
<td>/LOCK_STATE</td>
</tr>
<tr>
<td></td>
<td>/NOTERMINATE</td>
</tr>
<tr>
<td>DELETE/KEY</td>
<td>Cancels a key definition. The default state is the current state.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Returns the PAD to data-transfer mode.</td>
</tr>
<tr>
<td>HELP</td>
<td>Displays online help.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 5–1 (Cont.) Commands Used to Control a PAD Session

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERRUPT</td>
<td>Sends an Interrupt to the remote DTE. The defaults are:</td>
</tr>
<tr>
<td><code>[data] /[NO]DISCARD</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data =1</td>
</tr>
<tr>
<td></td>
<td>/NODISCARD</td>
</tr>
<tr>
<td>RESET</td>
<td>Sends a Reset to the remote DTE.</td>
</tr>
<tr>
<td><code>[diagnostic]</code></td>
<td></td>
</tr>
<tr>
<td>SPAWN</td>
<td>Allows you to create a subprocess without leaving the first process. The defaults are:</td>
</tr>
<tr>
<td><code>[command] /[INPUT=file] /[NO]LOGICAL_NAMES</code></td>
<td></td>
</tr>
<tr>
<td><code>[OUTPUT=file] /[PROCESS=subprocess-name] /[NO]SYMBOLS</code></td>
<td></td>
</tr>
<tr>
<td><code>[NO]WAIT</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOGICAL_NAMES</td>
</tr>
<tr>
<td></td>
<td>SYMBOLS</td>
</tr>
<tr>
<td></td>
<td>WAIT</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a subprocess name, your subprocess will be given the name: username_process-number, where username is your user name, and process-number is the number of your process.</td>
</tr>
</tbody>
</table>
Table 5–2 Commands Used to Change the PAD Characteristics

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET [NO]BREAK_CHARACTER [control-character]</td>
<td>Sets up a control character to simulate pressing the <code>Break</code> key in data-transfer mode. The default is NOBREAK_CHARACTER.</td>
</tr>
<tr>
<td>SET [NO]DEFAULT_ESCAPE_CHARACTER [control-character]</td>
<td>Sets the default escape character to a specified control character. The default for the default escape character is P (that is, Ctrl/P).</td>
</tr>
<tr>
<td>SET INPUT filename [/SPEED=number]</td>
<td>Allows the named file to be sent as though the characters were being typed on the remote terminal. Omitting the /SPEED qualifier lets the data be sent as fast as possible.</td>
</tr>
<tr>
<td>**SET [NO]LOG_FILE [file][/NO]STAMP={ALL</td>
<td>NONE</td>
</tr>
<tr>
<td>SET PARAMETERS parameter-value-list</td>
<td>Sets PAD parameters.</td>
</tr>
<tr>
<td>SET PROFILE profile-name</td>
<td>Resets the PAD parameters to the values specified in the profile profile-name.</td>
</tr>
<tr>
<td>SET PROFILE/INITIAL</td>
<td>Returns to the default values for all the parameters (the PAD initial profile).</td>
</tr>
<tr>
<td>SET PROMPT [prompt-string][/NO]CARRIAGE_CONTROL</td>
<td>Changes the PAD prompt. The defaults are: prompt-string = PAD> /CARRIAGE_CONTROL</td>
</tr>
<tr>
<td>SET [NO]VMS_MODE</td>
<td>Causes the host–based PAD to operate in OpenVMS mode.</td>
</tr>
</tbody>
</table>
Using PAD Commands to Control the Host–Based PAD

5.6 Summary of PAD Commands

Table 5–3 Commands Used to Examine the PAD Characteristics

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW ALL</td>
<td>Presents the output of the following show commands (in the order shown):</td>
</tr>
<tr>
<td></td>
<td>- PARAMETERS</td>
</tr>
<tr>
<td></td>
<td>- DEFAULT_ESCAPE_CHARACTER</td>
</tr>
<tr>
<td></td>
<td>- LOG_FILE</td>
</tr>
<tr>
<td></td>
<td>- STATISTICS</td>
</tr>
<tr>
<td></td>
<td>- PROMPT</td>
</tr>
<tr>
<td></td>
<td>- VMS_MODE</td>
</tr>
<tr>
<td></td>
<td>- BREAK_CHARACTER</td>
</tr>
<tr>
<td>SHOW BREAK_CHARACTER</td>
<td>Shows the control character that is being used as the Break character.</td>
</tr>
<tr>
<td>SHOW DEFAULT_ESCAPE_CHARACTER</td>
<td>Shows the control character that is being used as the default escape character.</td>
</tr>
<tr>
<td>SHOW INPUT</td>
<td>Shows the name of the input file.</td>
</tr>
<tr>
<td>SHOW KEY key-name [STATE=state-name]</td>
<td>Displays your keypad definitions.</td>
</tr>
<tr>
<td>SHOW LOG_FILE</td>
<td>Names the file into which the data you send and receive is being copied.</td>
</tr>
<tr>
<td>SHOW PARAMETERS [NUMERIC] [parameter-list]</td>
<td>Displays the values of the PAD parameters.</td>
</tr>
<tr>
<td>SHOW PROFILE profile-name</td>
<td>Shows the parameter settings in the profile profile-name.</td>
</tr>
<tr>
<td>SHOW PROFILE/INITIAL</td>
<td>Shows the parameter settings in the initial profile.</td>
</tr>
<tr>
<td>SHOW PROMPT</td>
<td>Displays the PAD prompt.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 5–3 (Cont.) Commands Used to Examine the PAD Characteristics

SHOW STATISTICS

Presents information about the duration of the call.

SHOW VMS_MODE

Shows whether OpenVMS mode has been enabled.
This chapter describes how to connect to a remote system using the host–based PAD in CCITT mode (that is, the PAD's user interface is compatible with CCITT standard X.28).

This chapter describes how to:

- Connect to the host–based PAD (Section 6.1).
- Control a PAD session (Section 6.2).
- Change the characteristics of the host–based PAD within a PAD session (Section 6.3).
- Examine the characteristics of the host–based PAD within a PAD session (Section 6.4).

6.1 Connecting to the Host–Based PAD

To connect to a remote system, using the host–based PAD in CCITT mode, enter the following command:

```bash
$ SET HOST/X29/CCITT [[dte-class].dte-address]
```

where:

- `dte-class` is the name of the DTE class from which a member DTE will be used to connect to the remote DTE.
- `dte-address` is the address of the DTE to which you want to connect. The DTE address can consist of up to 15 characters.

If you do not specify a DTE class, X.25 for OpenVMS will use the DTE class specified in the PAD template. If there is no DTE class specified in the PAD template, X.25 for OpenVMS will use the DTE class specified in the system default template. If neither template specifies a DTE class, the command will fail.

To simplify the command, you can replace `dte-class` and `dte-address` with a logical name. Refer to Section 1.2 for details of setting up and using logical names.

When you specify the remote DTE address, you can use any of the qualifiers described in Chapter 3.

Note that specifying the remote DTE in the command line is optional. This gives you the option of connecting to the remote DTE in the usual way, or entering PAD command mode (from which you can make a call to the remote DTE). Sections 6.1.1 and 6.1.2 describe how to enter PAD command mode from the local and remote DTEs respectively.
Using the Host–Based PAD in CCITT Mode

6.1 Connecting to the Host–Based PAD

6.1.1 Entering PAD Command Mode from the Local DTE

To enter PAD command mode from the local DTE, enter the following command:

```
$ SET HOST/X29/CCITT
```

Note that if you do not specify the remote DTE on the SET HOST/X29/CCITT command line, you can use only the following qualifiers to the SET HOST/X29/CCITT command:

- /LOG
- /PARAMETER
- /VMS_MODE
- /DEFAULT_ESCAPE_CHARACTER
- /BREAK_CHARACTER
- /PROFILE
- /STATISTICS

6.1.2 Entering PAD Command Mode from the Remote DTE

To enter PAD command mode from the remote DTE, press the Escape character. The default Escape character is Ctrl/P, but if you have set a different Escape character for your session, use that character. (Section 4.1.2 describes how to set an Escape character when you connect to a remote DTE.) If there is no Escape character defined, press Ctrl/Y twice.

6.2 Controlling a PAD Session

This section describes how you can control a CCITT PAD session.

6.2.1 Connecting to a Remote DTE from the Host–Based PAD

To connect your terminal with a remote DTE, enter the following command:

```
PAD> A remote--dte
```

where `remote--dte` is the remote DTE specification, as described in Section 6.1.

When the circuit is established, you will see the message:

```
%PAD-I-COM, Call connected
```

To start the login procedure for the remote DTE, enter the following command:

```
PAD> EXIT
```

6.2.2 Returning to the Remote DTE

To return from PAD command mode to your session on the remote DTE, enter the following command:

```
PAD> EXIT
```

If you type EXIT, and you have no call established on the remote DTE, your call will clear.

6.2.3 Determining Whether the PAD Is Free

To determine whether the PAD is free or in use, enter the following command:

```
PAD> STAT
%PAD-I-ENGAGED, PAD engaged
```

The system message indicates whether the PAD is free or in use (engaged).
6.2.4 Clearing a Virtual Call
To clear all virtual calls in progress, enter the following command:

PAD> CLR

6.2.5 Putting Data in the Call Request Packet
If you want to put data into the user data field of the call request packet, enter the following command before you make the call:

PAD> U cccc

where cccc is up to 12 characters of data.
The characters must be printing characters, because the PAD discards non–printing characters.
Note that the PAD program converts all lowercase characters to uppercase and removes all spaces. If you want to use lowercase characters and spaces for the data, use the /USER_DATA qualifier to the SET HOST/X29 command.

6.2.6 Sending a Break Signal to the PAD
To send a Break signal to the host–based PAD, enter the following command:

PAD> BREAK

The action that occurs when a BREAK command is sent depends on the value of parameter 7, the Break parameter. To see the value of parameter 7, enter:

PAD> PAR? 7

For details of the values for parameter 7 refer to Chapter 10.
You need to use the BREAK command to send a Break signal to the host–based PAD. This is because the OpenVMS terminal driver discards Break characters, so any Break character typed at the terminal will be ignored by the PAD.

6.2.7 Sending an Interrupt to the Remote DTE
To send an Interrupt to the remote DTE, enter the following command:

PAD> INT

The effect of the interrupt on the remote DTE will depend on how the DTE is set up. For example, if the DTE is running X.25 for OpenVMS, it may ignore an interrupt.
Note that if you try to send a second Interrupt before the remote DTE and the PAD have completed handling the previous interrupt, the PAD will display:

%PAD-W-WARNINT, Previous interrupt incomplete

6.2.8 Sending a Reset to the Remote DTE
If you want to reset the virtual circuit between the PAD and the remote DTE (for example, if the line is slow), enter the following command:

PAD> RESET

Note that:
• When you send a Reset, you may lose some of the data being transferred between the PAD and the remote DTE.
Using the Host–Based PAD in CCITT Mode

6.2 Controlling a PAD Session

- If you try to send a second Reset before the remote DTE and the PAD have finished handling the previous Reset, the PAD will display:

 %PAD-W-WARNRES, Previous reset incomplete

6.3 Changing the PAD Characteristics

You can change the characteristics of individual PAD parameters by issuing the command:

```
PAD> SET parameter-list
```

where `parameter-list` is a list of parameter numbers and parameter values, in the form:

```
parameter-number:parameter-value
```

For example, to set the values of PAD parameters 3, 4, 5 and 10, to 48, 160, 0 and 132, respectively, enter the following command:

```
PAD> SET 3:48, 4:160, 5:0, 10:132
```

Alternatively, if you want to change some parameter values and have the new values displayed, enter the following command:

```
PAD> SET? parameter-list
```

For a description of the parameters and their values refer to Chapter 10.

Note that when you use the PAD in CCITT mode, you cannot use keywords to refer to the parameters. You have to reference the parameters by number.

6.4 Displaying the Characteristics of the Host–Based PAD

To display the current values for the PAD parameters, enter the following command:

```
PAD> PAR? [parameter-list]
```

where `parameter-list` is a list of PAD parameter numbers. If you do not specify a list of PAD parameter numbers, the PAD will display the values for **all** the parameters.

For example, to display the current values for PAD parameters 3, 4 and 9, enter the following command:

```
PAD> PAR? 3,4,9
```

For a description of the parameters and their values refer to Chapter 10.
This chapter describes how to use a remote OpenVMS system to control the behavior of your X.29 terminal.

To change the behavior of your X.29 terminal, you enter the following command on the remote OpenVMS system:

```
$ SET TERMINAL/X29
```

Note that you can use the SET TERMINAL/X29 command to change the characteristics of either a host–based PAD or a network PAD.

If you have sufficient privileges, you can also use the SET TERMINAL/X29 command to change the characteristics of all remote X.29 terminals, NV devices and PADs on your system. Chapter 10 describes how to do this.

This chapter describes how to:

- Change the characteristics of your X.29 terminal and the PAD (Section 7.1).
- Examine the characteristics of the PAD and the X.29 terminal (Section 7.2).

Section 7.3 provides a summary of the SET TERMINAL/X29 and SHOW TERMINAL/X29 commands.

7.1 Changing the Behavior of Your X.29 Terminal

This section describes how you can use the SET TERMINAL/X29 command to change:

- Standard PAD parameters
- Network–specific PAD parameters
- The response of your terminal to Break and Interrupt messages
- The display of information messages on your terminal

In addition, you can use the SET TERMINAL/X29 command to alter:

- PAD parameter templates. These control the behavior of the NV device (X.29 terminal driver) in host–echo mode, local–echo mode and at hangup.
- The hold timer. This determines how long the NV device waits before it forwards a data packet to the PAD.

For information about changing the PAD parameter templates and the hold timer, refer to Chapter 10.
7.1 Changing the Behavior of Your X.29 Terminal

7.1.1 Changing the PAD Parameters

To change individual PAD parameters, enter:

$ SET TERMINAL/X29/PARAMETERS=(parameter-specification)

where parameter-specification is a list of parameters and parameter values. You can express each parameter in one of two ways:

- The parameter keyword, for example, TIMEOUT
- The parameter number, for example, 4 (the TIMEOUT parameter)

You can also mix the two formats on the same command line. Each command line can contain any number of parameters, but if more than one parameter is specified, separate one parameter from the next with a comma.

If you specify a keyword, but no value, the parameter will be set to 1. If you put NO in front of the keyword (for example, NOTIMEOUT), the parameter will be set to 0.

For example, to set TIMEOUT to 10, FORWARDING_CHARACTERS to 0, and DELETE to 1, enter the following command:

$ SET TERMINAL/X29/PARAMETERS=(TIMEOUT=10), NOFORWARDING_CHARACTERS, DELETE

Alternatively, you could enter:

$ SET TERMINAL/X29/PARAMETERS=(4=10, 3=0, 16)

This is because TIMEOUT, FORWARDING_CHARACTERS and DELETE are parameters 4, 3 and 16, respectively.

For further details of the PAD parameters and their values refer to Chapter 10. Note that some of the PAD parameters must have specific values for the NV device to operate normally. Refer to Table A–1 for details of these PAD parameter values.

7.1.2 Changing and Setting Network–Specific PAD Parameters

Some networks have additional parameters that are not part of the CCITT X.3 1984 Recommendations. To set non–CCITT parameters, enter the following command:

$ SET TERMINAL/X29/NETWORK_SPECIFIC=(parameter-list)

where the parameter-list consists of numeric parameter identifiers and their values as pairs of numbers in a string. For example, to set parameter 120 to 35, parameter 24 to 19 and parameter 56 to 8, enter:

$ SET TERMINAL/X29/NETWORK_SPECIFIC=(120=35, 24=19, 56=8)

Note that the CCITT X.29 Recommendation specifies that network–specific parameters should be preceded by a 0=0 parameter pair. As some networks do not use this, X.25 for OpenVMS does not insert a 0=0 parameter pair. Therefore, you must explicitly specify the 0=0 parameter pair for any network where it is required. For example:

$ SET TERMINAL/X29/NETWORK_SPECIFIC=(0=0, 120=35, 24=19, 56=8)
7.1 Changing the Behavior of Your X.29 Terminal

7.1.3 Controlling the Response of the X.29 Terminal Driver (NV Device) to Break and Interrupt Messages

You can control the NV device’s response to Break and Interrupt messages by using the SET TERMINAL/X29 command with /BREAK and /INTERRUPT qualifiers.

Before you use either of these qualifiers determine the value of PAD parameter 7 (BREAK). This parameter determines the action of the PAD to the Break key.

For example, when you use the host–based PAD, PAD parameter 7 is set up to send both a Break message and an Interrupt message. If you do not want both of these actions to occur, you will have to change the parameter.

To display the value of parameter 7, enter the following command:

$ SHOW TERMINAL/X29

To alter parameter 7, use the /PARAMETERS qualifier to the SET TERMINAL/X29 command, as described in Section 7.1.1.

There are two optional facilities you can specify as arguments to the /BREAK and /INTERRUPT qualifiers to control your NV device’s response to Break and Interrupt messages:

1. [NO]ACTION = (keyword[, . . .])
 The keyword specifies which of the following actions the NV device will take:
 - PURGE, which causes the NV device to purge the Received Data buffer;
 - RESET, which causes the NV device to send a reset to the PAD; or
 - CLEAR, which clears the call, restores the PAD to its initial profile and ends the PAD session.

 Only actions you specify will be set.

2. [NO]STRING = "string".
 The string value specifies a string of characters to send to the OpenVMS terminal driver as though they have been sent by the PAD. The string can contain any character sequence (for example, “abc”), but note that backslashes, control characters and ASCII characters must be preceded with a backslash; for example:
 - Represent \ as “\\”.
 - Represent control characters as “\^character”. For example, represent \^K as “\^K”.
 - Specify any character in ASCII by “\”, followed by the ASCII code for that character.

 The default value for a Break message is \^O. The default value for an Interrupt message is \^Y. If you enter NOSTRING, the string is set to a null value.

For example:

- You can set up the NV device so that in response to a Break message it:
 - Sends a reset to the PAD.
 - Purges its own Received Data buffer.
 - Sends \^X to the OpenVMS terminal driver.
Using a Remote OpenVMS System to Control Your X.29 Terminal

7.1 Changing the Behavior of Your X.29 Terminal

To do this, enter:

\$ \texttt{SET TERMINAL/X29/BREAK=(ACTION=(RESET,PURGE),STRING="\^X")}

- You can set up the NV device so that in response to an Interrupt it:

 a. Sends a reset to the PAD.

 b. Passes the string “abc” to the OpenVMS terminal driver.

To do this, enter:

\$ \texttt{SET TERMINAL/X29/INTERRUPT=(ACTION=RESET,STRING="abc")}

7.1.4 Displaying Information Messages

To display informational messages sent to your X.29 terminal, enter the following command:

\$ \texttt{SET TERMINAL/X29/LOG}

7.2 Examining the Characteristics of Your X.29 Terminal and the PAD

To display the characteristics of your X.29 terminal and the PAD, enter the following command:

\$ \texttt{SHOW TERMINAL/X29}

This will display your terminal characteristics and the PAD parameters. By adding qualifiers to this command, you can:

- Display the PAD parameters as numbers, rather than keywords (use the qualifier /NUMERIC).
- Display the parameter templates in addition to the default display (add the qualifier /FULL).

For a full description of this command, refer to Chapter 11.

7.3 Summary of the SET TERMINAL/X29 and SHOW TERMINAL/X29 Commands

Tables 7–1 and 7–2 list in alphabetical order the qualifiers for the SET TERMINAL/X29 and SHOW TERMINAL/X29 commands, respectively.
Table 7–1 SET TERMINAL/X29 Command Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BREAK</td>
<td>Controls the response of the NV device to an Indication–of–break message.</td>
</tr>
<tr>
<td>/[NO]HOLD_TIMER</td>
<td>Changes the value of the hold timer. Refer to Chapter 10 for details.</td>
</tr>
<tr>
<td>/INTERRUPT</td>
<td>Controls the response of the NV device to an Interrupt message.</td>
</tr>
<tr>
<td>/LOG</td>
<td>Displays informational messages.</td>
</tr>
<tr>
<td>/NETWORK_SPECIFIC</td>
<td>Changes non–CCITT PAD parameters.</td>
</tr>
<tr>
<td>/PARAMETERS</td>
<td>Changes individual PAD parameters.</td>
</tr>
<tr>
<td>/TEMPLATE</td>
<td>Changes the PAD parameter templates for host–echo, local–echo and hangup. Refer to Chapter 10 for details.</td>
</tr>
</tbody>
</table>

Table 7–2 SHOW TERMINAL/X29 Command Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NUMERIC</td>
<td>Uses PAD parameter numbers instead of keywords in the display.</td>
</tr>
<tr>
<td>/FULL</td>
<td>Displays the PAD parameter keywords and their values, and also displays the PAD parameter templates.</td>
</tr>
</tbody>
</table>
Part III

Managing X.29 Communications

This part of the manual describes how to manage X.29 communications. It consists of 5 chapters:

• Chapter 8 provides a brief introduction to managing a PAD, an X.29 terminal, and the NV device.
• Chapter 9 explains how to set up system-wide defaults for X.29 terminals.
• Chapter 10 explains how to change the value of PAD parameters and the characteristics of the NV device.
• Chapter 11 explains how to display terminal characteristics using the SHOW TERMINAL command.
• Chapter 12 explains how to spool an X.29 terminal.
8.1 Introduction

The X.29 protocol defines the procedures for exchange of control information and user data between a Packet Assembler/Disassembler (PAD) and a remote packet–mode DTE. Figure 8–1 shows an example of an X.29 link.

Figure 8–1 An X.29 Communications Link

A packet–mode DTE that recognizes the X.29 protocol can use an X.29 program to communicate with a remote X.29 terminal. In X.29 communications, data passes between the X.29 terminal and the NV device through X.25 for OpenVMS. The NV device converts the data to the X.29 protocol.

This chapter describes the following tasks:

• Managing X25 Access templates (Section 8.2)
• Managing X25 Access filters (Section 8.3)
• Changing the operation of the PAD (Section 8.4)
• Setting and changing X.29 terminal characteristics (Sections 8.5 and 8.6)
• Spooling an X.29 terminal (Section 8.7)
• Creating a PAD profile file for outgoing connections (Section 8.8)
8.2 X25 Access Templates

X25 Access Templates define the values for call parameters of outgoing calls.

When you configure your system to include X.29 support, a template called X29Login (OpenVMS I64 and OpenVMS Alpha) or Default (OpenVMS VAX) is set up. It is possible to change this template, to give different values to all outgoing calls. You can alter the existing call parameter values or add new call parameters to the template.

It is also possible to create new templates for different types of outgoing call. If you create a new template you should define the logical name PSI$X29_X25 TEMPLATE to point to the new template.

The recommended way of creating and modifying templates is to run the X.25 configuration utility.

An alternative method of creating and modifying templates is to use the Network Control Language (NCL) utility. This utility can be used to make temporary or permanent changes to a template. It is recommended that:

- To make temporary changes to a template, use NCL commands.
 For details of creating and modifying X25 Access Templates using NCL, refer to the HP X.25 for OpenVMS—Management Guide.
- To make permanent changes to a template, run the X.25 configuration program.
 For details on configuring X25 Access Templates for X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha systems, refer to the HP X.25 for OpenVMS—Configuration manual. For details on configuring X25 Access Templates for DECnet–Plus for OpenVMS VAX systems, refer to the HP DECnet–Plus for OpenVMS—Installation and Configuration manual.

8.3 X25 Access Filters

X25 Access Filters determine which applications receive the incoming calls.

When you configure your system to include X.29 support, a filter called X29 (OpenVMS I64 and OpenVMS Alpha) or X29_LOGIN (OpenVMS VAX) is set up. If you want to change any of the values or add more attributes, you can modify this filter using the Network Control Language (NCL) utility. As in the case of templates, this utility can be used to make either temporary or permanent changes to the filter. It is recommended that:

- To make temporary changes to the filter, use NCL commands.
 For details of how to modify filters using NCL, refer to the HP X.25 for OpenVMS—Management Guide.
- To make permanent changes to the filter, run the X.25 configuration program.
 For details on configuring X25 Access Filters for X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha systems, refer to the HP X.25 for OpenVMS—Configuration manual. For details on configuring X25 Access Filters for DECnet–Plus for OpenVMS VAX systems, refer to the HP DECnet–Plus for OpenVMS—Installation and Configuration manual.
8.4 PAD Operation

A PAD can operate in two modes:

- **Local–echo mode**, in which characters typed at the terminal are echoed by the PAD.

- **Host–echo mode**, in which characters typed at the terminal are sent across the PSDN, and echoed across the PSDN.

For each mode, some PAD parameters must be set to specific values for communication across the network. Other PAD parameters, which are optional, can be set to optimize or change features of communication across the network.

The NV device keeps a list of PAD parameters for each mode. Each list is called a PAD parameter template. Each PAD parameter template contains mandatory values for some parameters, and the user’s preferred values for other parameters.

Note

Do not confuse PAD parameter templates with the X25 Access Templates described in Section 2.2 and Section 8.2, which define outgoing call parameters. Throughout this manual the term PAD parameter template refers to a list of PAD parameter values.

In addition to the PAD parameter templates for local–echo and host–echo mode, there is a PAD parameter template for use by the NV device when it receives a HANGUP request from the X.29 terminal.

Table 8–1 shows the parameters which must be included in the PAD parameter templates for correct operation of the NV device. Make sure you include these parameters each time you modify the PAD parameter templates. Parameters which are not required in the PAD parameter templates, but which can be specified, are indicated by a dash (–).

Some of the values can be set by the user for one or more of the PAD parameter templates. This is indicated in the rightmost column.

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Parameter Name</th>
<th>LOCAL_ECHO</th>
<th>HOST_ECHO</th>
<th>HANGUP</th>
<th>May Be Set by User?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ESCAPE_CHARACTER</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>ECHO</td>
<td>1(On)</td>
<td>0(Off)</td>
<td>1(On)</td>
<td>Yes¹</td>
</tr>
<tr>
<td>3</td>
<td>FORWARDING_CHARACTERS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>TIMEOUT</td>
<td>0(Off)</td>
<td>User’s value</td>
<td>0(Off)</td>
<td>Yes²</td>
</tr>
<tr>
<td>5</td>
<td>HOSTSYNC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
</tbody>
</table>

¹Users can only set this value in local–echo and hangup mode.

²Users can only set this value in host–echo and hangup mode. Parameter 4 is set to the last value set by the user, or to 1 if the user specified no value.

(continued on next page)
8.4 PAD Operation

Table 8–1 (Cont.) PAD Parameter Template Defaults

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Parameter Name</th>
<th>LOCAL_ECHO</th>
<th>HOST_ECHO</th>
<th>HANGUP</th>
<th>May Be Set by User?</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>MESSAGES</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>BREAK</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>DISCARD_OUTPUT</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CRFILL</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>WRAP</td>
<td>–</td>
<td>0(Off)</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>SPEED</td>
<td>Read–only parameter</td>
<td>–</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TTSYNC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>NEW_LINE</td>
<td>4</td>
<td>0(Off)</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>LFFILL</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>EDIT</td>
<td>1(On)</td>
<td>0(Off)</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>DELETE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>LINE_DELETE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>REDISPLAY_LINE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>DISPLAY_EDIT</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>RESTRICT_ECHO</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>PARITY</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>PAGE_WAIT</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3 Users can only set this value in local–echo mode.

8.5 Setting Default X.29 Terminal Characteristics

You can control your X.29 communications links by setting up system–wide default characteristics for X.29 terminals before you start X.25 for OpenVMS.

There are two ways to do this:

- Use system logical names.
- Use the system template command procedure to set up default PAD parameter templates:

  ```plaintext
  SYS$MANAGER:X25$X29_SYSTEM_TEMPLATE.COM  (OpenVMS I64/OpenVMS Alpha)
  SYS$EXAMPLES:PSI$X29_SYSTEM_TEMPLATE.COM  (OpenVMS VAX)
  ```

The system template command procedure helps you set up all characteristics correctly. More experienced users may prefer to use system logical names. Refer to Chapter 9 for details of both methods.
8.6 Changing X.29 Terminal Characteristics

You can control your X.29 communications link by changing the default X.29 terminal characteristics for individual sessions after you have started X.25 for OpenVMS.

To do this, you need to change the PAD parameter values that control the operation of the NV device. There are two ways to change the PAD parameter values:

- Use SET TERMINAL/X29 commands.
- Use the user template command procedure:

  ```
  SYS$MANAGER:X25$X29_USER_TEMPLATE.COM (OpenVMS I64/Alpha)
  SYS$EXAMPLES:PSI$X29_USER_TEMPLATE.COM (OpenVMS VAX)
  ```

The user template command procedure helps you set up all characteristics correctly. More experienced users may prefer to change terminal characteristics directly, using SET TERMINAL/X29 commands. Refer to Chapter 10 for details of both methods.

8.7 Spooling an X.29 Terminal

X.29 terminals, like local OpenVMS terminals, can be spooled or non–spooled. Spooled devices put requests into a queue; for example, a spooled printer puts print requests in a waiting line and prints the requests one after another. Refer to Chapter 12 for details of how to set up your X.29 terminal as a spooled device.

8.8 Creating a System–Wide PAD Profile File for Outgoing Connections

You can create a file that records site–specific PAD profiles, each with a different name. These PAD profiles are useful if you are accessing non–OpenVMS systems at regular intervals. Non–OpenVMS systems often demand that your PAD parameters are set to particular values.

The file contains PROFILE commands with profile names and the parameter settings associated with them. The PROFILE command should be entered using the following format:

```
$ PROFILE profile-name parameter-list
```

where the variable `profile-name` is the name of the profile, and `parameter-list` is a list of parameters and their values.

You should set up a default profiles file called `PSI$PAD_PROFILES.DAT` in the `SYS$MANAGER:` directory. Use a text editor to create this file in the same way as you would create any other file. You may use the comment character for inserting comments. Use a hyphen if you continue a profile for more than one line. An example profile is shown below:

```
! Profile for connection to machine 5
!
PROFILE MACHINE_5 -
   ECHO, NOEDIT, BREAK=2, -
   FORWARDING_CHARACTERS=2
```
Here, the profile name is MACHINE_5 and the parameters that distinguish the profile for this machine are: ECHO, NOEDIT, BREAK=2, and FORWARDING_CHARACTERS=2.

For more information about using the system–wide PAD profile file and creating and using user–level PAD profile files, see Chapter 3.
Setting Default X.29 Terminal Characteristics

The SYSGEN parameters TTY_DEFCHAR and TTY_DEFCHAR2 define the default characteristics of the NV device when an OpenVMS system boots. However, you can set up system–wide defaults for X.29 terminals by defining some logical names before starting X.25 for OpenVMS.

9.1 X.29 Configuration Logical Names

Table 9–1 lists the X.29 configuration logical names that are available. The table shows the parameters each name represents. If you do not set up any values, the X.25 startup command procedure, X25$STARTUP.COM (OpenVMS I64 and OpenVMS Alpha systems) or PSI$STARTUP.COM (OpenVMS VAX systems), uses the values given in Table 9–1 to set up the NV device.

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Parameter</th>
<th>Example Setting (Default Used by X25$STARTUP.COM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI$X29_PARAMETERS</td>
<td>PAD parameters</td>
<td>TIMEOUT=1</td>
</tr>
<tr>
<td>PSI$X29_HOLD_TIMER</td>
<td>Hold timer</td>
<td>0</td>
</tr>
<tr>
<td>PSI$X29_INTERRUPT</td>
<td>Interrupt action</td>
<td>ACTION=PURGE, STRING="^Y"</td>
</tr>
<tr>
<td>PSI$X29_BREAK</td>
<td>Break action</td>
<td>NOACTION, STRING="^O"</td>
</tr>
<tr>
<td>PSI$X29_HANGUP_PARAMETER_</td>
<td>Hangup parameter</td>
<td>PAR=ECHO, VALUE=ON</td>
</tr>
<tr>
<td>TEMPLATE</td>
<td>template</td>
<td>PAR=TIMEOUT, VALUE=OFF</td>
</tr>
<tr>
<td>PSI$X29_LOCAL_ECHO_PARAMETER_</td>
<td>Local–echo parameter template</td>
<td>PAR=ECHO, VALUE=ON</td>
</tr>
<tr>
<td>TEMPLATE</td>
<td></td>
<td>PAR=TIMEOUT, VALUE=OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAR=NEW_LINE, VALUE=4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAR=EDIT, VALUE=ON</td>
</tr>
</tbody>
</table>

(continued on next page)
Setting Default X.29 Terminal Characteristics

9.1 X.29 Configuration Logical Names

Table 9–1 (Cont.) Logical Names and Example Settings

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Parameter</th>
<th>Example Setting (Default Used by X25$STARTUP.COM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI$X29_</td>
<td>Host–echo parameter</td>
<td>PAR=ECHO, VALUE=OFF</td>
</tr>
<tr>
<td>HOST_ECHO_</td>
<td></td>
<td>PAR=TIMEOUT, USER_VALUE</td>
</tr>
<tr>
<td>TERMINAL_CHARACTERISTICS</td>
<td></td>
<td>PAR=WRAP, VALUE=OFF</td>
</tr>
<tr>
<td>TERMINAL_CHARACTERISTICS</td>
<td></td>
<td>PAR=NEW LINE, VALUE=0</td>
</tr>
<tr>
<td>TERMINAL_CHARACTERISTICS</td>
<td></td>
<td>PAR=EDIT, VALUE=OFF</td>
</tr>
</tbody>
</table>

Note

Once the X.25 startup procedure runs, changing the logical name values has no effect. To change the parameters after X.25 startup, you must follow the procedures outlined in Chapter 10.

Table 9–2 shows the parameter attributes you can use with the logical names.

Table 9–2 Parameter Attributes

<table>
<thead>
<tr>
<th>Parameter Attributes¹</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE=X29–value</td>
<td>Sets a value for the parameter. The value must be either a number or the keywords ON (value=1) or OFF (value=0).</td>
</tr>
<tr>
<td>USER_VALUE</td>
<td>The last value set by a user program is used. For example, if this attribute applies to the TIMEOUT parameter and a program has set the TIMEOUT value to 20, 20 is kept as the parameter value.</td>
</tr>
<tr>
<td>IF_CHANGED</td>
<td>If the parameter value is the same as when the parameter was last sent, then the parameter is not sent again.</td>
</tr>
<tr>
<td>CALCULATED</td>
<td>Calculates a value for the parameter. (Only used with WRAP and with ECHO in local–echo mode.) If this attribute applies to the WRAP parameter, the terminal width is the calculated value. If this attribute applies to the ECHO parameter, the PAD does not echo secret information (such as a password).</td>
</tr>
</tbody>
</table>

¹Combinations other than those given here cause undefined results and are not recommended.

(continued on next page)
Table 9–2 (Cont.) Parameter Attributes

<table>
<thead>
<tr>
<th>Parameter Attributes¹</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD_VALUE=number</td>
<td>Can be used with USER_VALUE or CALCULATED. With USER_VALUE, X.25 for OpenVMS adds the number (specified in the ADD_VALUE parameter) to the user value. With CALCULATED, X.25 for OpenVMS adds the number to the calculated value.</td>
</tr>
</tbody>
</table>

¹Combinations other than those given here cause undefined results and are not recommended.

9.2 Setting System–Wide Defaults for X.29 Terminals

To use the logical names listed in Table 9–1, issue the DCL DEFINE command in the following format:

```
$ DEFINE logical-name equivalence-string
```

where the variable logical-name is one of those in Table 9–1 and variable equivalence-string is a PAD parameter name, a parameter attribute (if required) and a value setting.

For example:

- To start all X.29 terminals in local–echo mode, use:

  ```
  $ DEFINE/SYSTEM PSI$X29_TERMINAL_CHARACTERISTICS -
  _$ /*LOCAL_ECHO/NOECHO/HANGUP/DIALUP*
  ```

- To ensure that all X.29 terminals use the system password and hangup, use:

  ```
  $ DEFINE/SYSTEM PSI$X29_TERMINAL_CHARACTERISTICS -
  _$ /*SYSPASSWORD/HANGUP*
  ```

- To define a local–echo parameter template, specify the parameter values and then define the local–echo parameter template:

  ```
  $ TEMPLATE = "(PAR=ECHO,VAL=ON),(PAR=TIMEOUT,VAL=OFF), -
  _$ (PAR=NEWLINE,VAL=4),(PAR=EDIT,VAL=ON)"
  $ DEFINE/SYSTEM PSI$X29_LOCAL_ECHO_PARAMETER_TEMPLATE "TEMPLATE"
  ```

In the above examples, the use of quotation marks follows DCL rules (refer to the HP OpenVMS DCL User Manual or HP OpenVMS DCL Dictionary).

9.2.1 Setting 7–Bit ASCII and Parity

You can set up your OpenVMS system to communicate with terminals that use 7–bit ASCII and even parity. To set up 7–bit even parity, use the following command:

```
$ DEFINE/SYSTEM PSI$X29_TERMINAL_CHARACTERISTICS "/NOEIGHT -
_" /PARITY=EVEN"
```

When you set up 7–bit even parity you instruct the NV device to strip the eighth bit on input. On output, the eighth bit is replaced with even parity.

The NV device does not support odd parity. Also, if you specify 8–bit parity, the NV device has nowhere to put the parity bit and so parity does not affect what is sent and received.
9.3 Using the System Template Command Procedure

The system template command procedure lets you define system–wide defaults for all NV devices within the system. To use the command procedure, enter the following command:

```
$ @SYS$MANAGER:X25$X29_SYSTEM_TEMPLATE.COM parameter (OpenVMS I64/OpenVMS Alpha)
$ @SYS$EXAMPLES:PSI$X29_SYSTEM_TEMPLATE.COM parameter (OpenVMS VAX)
```

where the variable `parameter` is one of the values given in Table 9–3.

Table 9–3 X25$X29_SYSTEM_TEMPLATE.COM Parameter Values

<table>
<thead>
<tr>
<th>Parameter Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT</td>
<td>Sets the default template.</td>
</tr>
<tr>
<td>ECHO</td>
<td>As for DEFAULT except that the ECHO parameter in the local–echo template has the CALCULATED attribute (see Table 9–2).</td>
</tr>
<tr>
<td>WRAP</td>
<td>As for DEFAULT except that the WRAP parameter in the local–echo template has the CALCULATED attribute (see Table 9–2).</td>
</tr>
<tr>
<td>HELP</td>
<td>Tells you how to use this command procedure.</td>
</tr>
</tbody>
</table>

For example, to set the default template on an OpenVMS I64 or OpenVMS Alpha system, use the system template command procedure as follows:

```
$ @SYS$MANAGER:X25$X29_SYSTEM_TEMPLATE.COM DEFAULT
$ define psi$x29_host_echo_parameter_template -
  _$ "(parameter=echo,value=off),(parameter=timeout,user_value), -
  _$ (parameter=new_line,value=off),(parameter=wrap,value=off), -
  _$ (parameter=edit,value=off)"
$ define psi$x29_local_echo_parameter_template -
  _$ "(parameter=echo,value=on),(parameter=timeout,value=off), -
  _$ (parameter=new_line,value=4),(parameter=edit,value=on)"
$ define psi$x29_hangup_parameter_template -
  _$ "(parameter=echo,value=on),(parameter=edit,value=on)"
```

9–4 Setting Default X.29 Terminal Characteristics
This chapter describes how to change the operation of the active NV device and, therefore, change the characteristics of X.29 terminals after you have started X.25 for OpenVMS.

To change the operation of the active NV device, you must change the value of the PAD parameters. This chapter explains how to:

- Use SET TERMINAL/X29 commands to change individual PAD parameters, to change the Hold Timer, and to control the response of the NV device on Break and Interrupt.
- Use PAD parameter templates to control the NV device when the mode of the PAD changes.

10.1 Using the SET TERMINAL/X29 Command to Control X.29 Terminal Characteristics

You can change the values of PAD parameters and the characteristics of X.29 terminals using the SET TERMINAL/X29 command. The format of this command is:

```
$ SET TERMINAL/X29/qualifier [device-name]
```

where the variable `device-name` is the terminal device that you want to change. Omit the device name if you want to alter the characteristics of your own terminal.

You can use the /LOG qualifier with the SET TERMINAL/X29 command to display information messages sent to the terminal, for example, the terminal name and the state of the Hold Timer. Issue the command in the form:

```
$ SET TERMINAL/X29/LOG
```

10.1.1 Changing Individual Parameters

You can change individual parameters by using the /PARAMETERS qualifier with the SET TERMINAL/X29 command:

```
$ SET TERMINAL/X29/PARAMETERS=(parameter-value-list)
```

Refer to each parameter by its keyword or number. Using the negative form of the keyword sets the parameter to 0. Refer to the Chapter 7 for more information on changing individual parameters.
10.1.2 Changing the Hold Timer

The hold timer determines how long the NV device waits before forwarding a data packet to the PAD. You can change the value of the hold timer by using the /HOLD_TIMER qualifier with the SET TERMINAL/X29 command:

```
SET TERMINAL/X29/HOLD_TIMER=(n)
```

where the value \(n \) is the number of timer units. Each unit is one tenth of a second. For example, the following command sets the hold timer to one fifth of a second:

```
SET TERMINAL/X29/HOLD_TIMER=(2)
```

If the hold timer is turned off (/NOHOLD_TIMER), the NV device does not wait before forwarding a packet. Therefore, packets are only partly filled before they are forwarded. Typically, this results in one line of output per packet and can result in inefficient use of packets.

If the hold timer is set, packets contain more data but the delay in forwarding the packets is increased. Typically, this results in several lines of output per packet. Set a time that suits the way you use the PAD.

10.1.3 Controlling the Response of the NV Device to Break and Interrupt Messages

You can control the NV device's response to Break and Interrupt messages by using the SET TERMINAL/X29 command with /BREAK and /INTERRUPT qualifiers.

Before you use either of these qualifiers, determine the value of PAD parameter 7 (BREAK). This parameter determines the reaction of the PAD to the Break key.

For example, when you use the host–based PAD, PAD parameter 7 is set up to send both a Break message and an Interrupt message. If you do not want both of these actions to occur, you will have to change the parameter.

To display the value of parameter 7, enter the following command:

```
SHOW TERMINAL/X29
```

To alter parameter 7, use the SET TERMINAL/X29/PARAMETERS command, as described in Section 10.1.1.

There are two optional facilities you can specify to control your NV device's response to Break and Interrupt messages:

1. [NO]ACTION
 This specifies which of the following actions the NV device will take:
 - PURGE, which causes the NV device to purge the Received Data buffer.
 - RESET, which causes the NV device to send a reset to the PAD.
 - CLEAR, which clears the call, restores the PAD to its initial profile and ends the PAD session.
 Only the actions you specify will be performed.

2. [NO]STRING "string".
10.1 Using the SET TERMINAL/X29 Command to Control X.29 Terminal Characteristics

This specifies a string of characters to send to the OpenVMS terminal driver as though they have been sent by the PAD. The string can contain any character sequence, for example, "abc". However, there is a special way to represent a backslash (\), control characters and ASCII characters:

- Represent a backslash as two backslashes, that is: "\".
- Represent control characters as "\^character". For example, represent \^K as "\^K".
- Specify any character in ASCII by "\ascii". For example, represent the character A in ASCII as "\65".

The default value for a Break message is \^O. The default value for an Interrupt message is \^Y. If you enter NOSTRING, the string is set to a null value.

For example:

- You can set up the NV device so that in response to a Break message it:
 a. Sends a reset to the PAD
 b. Purges its own Received Data buffer
 c. Sends \^X to the OpenVMS terminal driver

To do this, enter the following command:

```
$ SET TERMINAL/X29/BREAK=(ACTION=(RESET,PURGE),STRING="\^X")
```

- You can set up the NV device so that in response to an Interrupt it:
 a. Sends a reset to the PAD
 b. Passes the string "abc" to the OpenVMS terminal driver

To do this, enter the following command:

```
$ SET TERMINAL/X29/INTERRUPT=(ACTION=RESET,STRING="abc")
```

10.2 Using PAD Parameter Templates to Control the NV Device

When the mode of the PAD changes, the NV device uses the appropriate template to update the PAD parameters. Section 10.2.1 describes how to specify PAD parameter templates using the SET TERMINAL/X29 command. Section 10.2.2 describes how to specify PAD parameter templates using the user template command procedure.

10.2.1 Specifying PAD Parameter Templates Using SET TERMINAL/X29

To specify a PAD parameter template, issue the SET TERMINAL/X29 command in the following format:

```
$ SET TERMINAL/X29/TEMPLATE=template-name=template
```

The variable template-name is the name of the template you want to specify (LOCAL_ECHO, HOST_ECHO or HANGUP) and template is the set of PAD parameter values to be assigned to that template.

The variable template consists of a set of parameter keywords, their values and attributes, and is defined in the following format:

```
{((PARAMETER=name-or-number,[attribute]), (PARAMETER=name-or-number,[attribute]), (...))}
```
Refer to Table 9–2 for a list of the available attributes.

The following example shows how to specify a LOCAL_ECHO parameter template:

$ SET TERMINAL/X29/TEMPLATE=LOCAL_ECHO=(-
 _$ (parameter=echo,calculated), -
 _$ (parameter=timeout,value=off), -
 _$ (parameter=wrap,calculated,add_value=1), -
 _$ (parameter=new_line,value=4), -
 _$ (parameter=edit,value=on))$

10.2.2 Specifying PAD Parameter Templates Using the User Template Command Procedure

You can use the user template command procedure to specify the default PAD parameter templates. Enter the following command:

$ @SYS$MANAGER:X25$X29_USER_TEMPLATE.COM parameter (OpenVMS I64/OpenVMS Alpha)
$ @SYS$EXAMPLES:PSI$X29_USER_TEMPLATE.COM parameter (OpenVMS VAX)

The variable parameter can be DEFAULT, ECHO or WRAP. These values are described in Table 9–3.

For example, to specify the default PAD parameters for all three templates on an OpenVMS I64 or OpenVMS Alpha system, use the user template command procedure as follows:

$ @SYS$MANAGER:X25$X29_USER_TEMPLATE DEFAULT
$ set terminal/x29/template=(-
 _$ host_echo= -
 _$ (parameter=echo,value=off), -
 _$ (parameter=timeout,user_value), -
 _$ (parameter=new_line,value=off), -
 _$ (parameter=wrap,value=off), -
 _$ (parameter=edit,value=off), -
 _$ local_echo= -
 _$ (parameter=echo,value=on), -
 _$ (parameter=timeout,value=off), -
 _$ (parameter=new_line,value=4), -
 _$ (parameter=edit,value=on), -
 _$ hangup= -
 _$ (parameter=echo,value=on), -
 _$ (parameter=edit,value=on))
You use the SHOW TERMINAL/X29 command to display the characteristics of X.29 terminals.

11.1 Using the SHOW TERMINAL/X29 Command

The format of the SHOW TERMINAL/X29 command is:

```
SHOW TERMINAL/X29/qualifier [device-name:]
```

where the variable `device-name` is the name of the terminal device for which you want the characteristics displayed. Omit the device name if you want to display the characteristics of your own terminal.

There are two qualifiers you can use with the SHOW TERMINAL/X29 command:

- `/NUMERIC` displays the PAD parameters and their values in numeric form.
- `/FULL` displays the PAD parameter templates as well as the PAD parameters and their values.

In the examples used in this chapter, the PAD parameters have been set up as shown in Table 11–1.
Displaying Terminal Characteristics

11.1 Using the SHOW TERMINAL/X29 Command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>ESCAPE_CHARACTER: Escape to command mode on receipt of data-link-escape character.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>ECHO: PAD does not echo.</td>
</tr>
<tr>
<td>3</td>
<td>126</td>
<td>FORWARDING_CHARACTERS: (64+32+16+8+4+2 = 126). Forwarding on filling a packet, Delete, and Control characters.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>TIMEOUT=1: Timeout set at 1/20 of a second.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>HOSTSYNC: For data transfer mode.</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>MESSAGES: PAD messages transmitted and PAD prompt in use.</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>BREAK: Interrupt and Indication-of-break sent to remote DTE, output to terminal discarded.</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>DISCARD_OUTPUT: Normal data delivery.</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>CRFILL: No padding.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>WRAP: No line folding.</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>SPEED: Terminal speed is set to this value.</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>TTSYNC: Flow Control set.</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>NEW_LINE: No LF insertion.</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>LFFILL: No padding.</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>EDIT: No editing.</td>
</tr>
<tr>
<td>16</td>
<td>127</td>
<td>DELETE: ASCII code character used.</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>LINE_DELETE: [Ctrl]+[U].</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>REDISPLAY_LINE: [Ctrl]+[R].</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>DISPLAY_EDIT: Video terminal type display.</td>
</tr>
<tr>
<td>20</td>
<td>254</td>
<td>RESTRICT_ECHO: No echo of editing keys, DELETE, or control characters except CR.</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>PARITY: No parity checking.</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>PAGE_WAIT: No page wait.</td>
</tr>
</tbody>
</table>
11.2 Displaying PAD Parameters and Their Values

The example below shows the result of issuing the SHOW TERMINAL/X29 command:

```
$ SHOW TERMINAL/X29
X.29 Terminal: _NVA1: Network.Remote DTE: 000056789010
    Interrupt action: String: '\^Y' Flags: Purge type ahead
    Break action: String: '\^O' Flags: None
    Hold timer: 0

PAD parameters:
PAD escape: No Echo
Forward on buffer full: Forward on 'A'-'_'
Forward on 'DEL': 1
Hostsync for data: PAD prompt
PAD messages: Interrupt on break
Send indication of break: Discard output on break
Normal output: No Crfill
No Wrap: Speed: 9600
Tsync: No Newlines
No Lfill: No PAD Editing
Delete char 'DEL': Line delete '\^U'
Redisplay line '\^R': Scope edit display
Do not echo '\^A'-'\L': Do not echo '\^N'-'\_'
Do not echo edit keys: Do not echo 'DEL'
No Parity: No Page Wait
```

11.3 Displaying PAD Parameters and Their Values in Numeric Form

To display the PAD parameters and their values in numeric form for an X.29 terminal, use the SHOW TERMINAL/X29/NUMERIC command:

```
$ SHOW TERMINAL/X29/NUMERIC
X.29 Terminal: _NVA1: Network.Remote DTE: 000056789010
    Interrupt action: String: '\^Y' Flags: Purge type ahead
    Break action: String: '\^O' Flags: None
    Hold timer: 0

PAD parameters:
1 = 1 (Escape character) 2 = 0 (Echo)
3 = 126 (Forwarding characters) 4 = 1 (Timeout)
5 = 1 (Hostsync) 6 = 5 (Messages)
7 = 21 (Break) 8 = 0 (Discard output)
9 = 0 (Crfill) 10 = 0 (Wrap)
11 = 14 (Speed) 12 = 1 (Tsync)
13 = 0 (New line) 14 = 0 (Lfill)
15 = 0 (Edit) 16 = 127 (Delete)
17 = 21 (Line delete) 18 = 18 (Redisplay line)
19 = 2 (Display edit) 20 = 254 (Restrict echo)
21 = 0 (Parity) 22 = 0 (Page wait)
```
11.4 Displaying Parameter Templates and Terminal Characteristics

To display the PAD parameter templates and PAD parameter values for an X.29 terminal, use the SHOW TERMINAL/X29/FULL command:

```
$ SHOW TERMINAL/X29/FULL
```

X.29 Terminal: _NVA1: Network.Remote DTE: 000056789010

Interrupt action: String: ‘\^Y’ Flags: Purge type ahead
Break action: String: ‘\^O’ Flags: None
Hold timer: 0

Local echo parameter template:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>Timeout</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>New line</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>Edit</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

Host echo parameter template:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Timeout</td>
<td>0</td>
<td>User value</td>
</tr>
<tr>
<td>Wrap</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>New line</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Edit</td>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

Hangup parameter template:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>Timeout</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Edit</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

PAD parameters:

- PAD escape: No Echo
- Forward on buffer full: Forward on ‘\^A’-‘\^L’
- Forward on ‘DEL’: Timeout 1
- Hostsync for data: PAD prompt
- PAD messages: Interrupt on break
- Send indication of break: Discard output on break
- Normal output: No CRfill
- No Wrap: Speed: 9600
- TTsync: No Newlines
- No LFfill: No PAD Editing
- Delete char ‘DEL’: Line delete ‘\^U’
- Redisplay line ‘\^R’: Scope edit display
- Do not echo ‘\^A’-‘\^L’: Do not echo ‘\^N’-‘\^_’
- Do not echo edit keys: Do not echo ‘DEL’
- No Parity: No Page Wait
12.1 Setting Up an X.29 Terminal as a Spooled Device

There are two ways to set up an X.29 terminal as a spooled device:

• Log on over X.29 and execute a command procedure to spool the current terminal as a terminal queue.

• Set up an X.29 destination that executes a command file to set up the NV device as a terminal queue.

Section 12.2 and Section 12.3 contain example command procedures that you can use to spool an X.29 terminal.
12.2 Command Procedure to Spool the Current Terminal

The following command procedure spools the current terminal as a terminal queue.

```bash
$ ! Spool current interactive terminal as a terminal queue
$ !
$ if $mode() .eqs. "BATCH" then goto set_up_queue
$!
$ priv = f$setprv("log_io,phy_io")
$ term_name = f$getdvi("TT:","tt_phydevnam") - "_" - ":"
$!
$ !
$ ! Note that in a cluster this job must be submitted on a
$ ! queue which will run on the same node.
$ !
$ submit/noprint/parameter='term_name -
  'f$environment("procedure")
$!
$ set terminal/permanent -
  /device=la100/pasthru/notypeahead/form/lower -
  /page=66/width=132/nowrap/nohangup/nomodem
$ if f$getdvi("TT:","tt_disconnect") then disconnect
$ if .not. f$getdvi("TT:","tt_disconnect") then logout
$ exit
$!
$ set_up_queue:
$ set process/priv=(oper,phy_io)
$ wait 0:0:30
$ set device 'p1 /spooled
$ initialize/queue 'p1
$ start/queue 'p1/default=(flag=one,noburst)/prot=w=rw
$ exit
```
12.3 Command Procedure to Set Up the NV Device as a Terminal Queue

The following command procedure sets up the NV device as a terminal queue.

```
$ ! Command procedure for X29_SERVER destination
$ ! to spool terminal as a terminal queue
$ !
$ set process/privilege=(oper,phy_io)
$ open sys_net sys$net
$ read sys_net connect_message
$ close sys_net
$ unit = f$cvui(16,16,connect_message) ! Get NV unit number
$ set terminal nva'unit' /permanent -
   /device=la100/pasthru/notypeahead/form/lower -
   /page=66/width=132/nowrap/nohangup/nomodem
$ set device nva'unit' /spooled
$ initialize/queue nva'unit'
$ start/queue nva'unit' /default={flag=one,noburst}/prot=w=rw
$```

Spooling an X.29 Terminal
This appendix describes the standard PAD parameters. You can set all the PAD parameters, except for SPEED (Parameter 11), which is a read-only parameter.

However, note that if the remote DTE is an OpenVMS system, some of the PAD parameters must have certain values for the NV device to operate normally. Table A–1 shows these PAD parameter values.

<table>
<thead>
<tr>
<th>State of the NV Device</th>
<th>Mandatory PAD Parameter Values</th>
<th>Recommended PAD Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local–echo mode</td>
<td>NEWLINE=4</td>
<td>ECHO=ON or CALCULATED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORWARDING CHARACTERS=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR, Ctrl/Z and Ctrl/Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIMEOUT=OFF</td>
</tr>
<tr>
<td>Host–echo mode</td>
<td>NEWLINE=0</td>
<td>TIMEOUT—not OFF</td>
</tr>
<tr>
<td></td>
<td>ECHO=0</td>
<td>EDIT=0</td>
</tr>
<tr>
<td>Hangup</td>
<td></td>
<td>EDIT=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECHO=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIMEOUT=0</td>
</tr>
</tbody>
</table>
A.1 Parameter 1 (ESCAPE_CHARACTER)

Default=1 (Ctrl/P).

This parameter specifies the ASCII character that controls escape to PAD command mode. For example, a parameter value of 33 specifies ! (an exclamation mark) as the Escape character. Specify one of the following values:

0    PAD does not enter command mode on receiving an Escape character.
1    PAD enters command mode on receiving the Escape character [Ctrl/P].
2 to 31 Specify the Escape character. These values are extensions to the CCITT values.
32 to 255 Specify the Escape character.

A.2 Parameter 2 (ECHO)

Default=1 (PAD echoes).

This parameter specifies whether the PAD echoes the input entered at the X.29 terminal. Refer to Part III for details of the relationship between PAD echoing and the OpenVMS local echoing characteristic (SET TERMINAL/LOCAL_ECHO). Specify one of the following values:

0    PAD does not echo.
1    PAD echo.

A.3 Parameter 3 (FORWARDING_CHARACTERS)

Default=126 (2 + 4 + 8 + 16 + 32 + 64).

This parameter specifies the characters that cause data to be transmitted from the PAD to the remote DTE. The CCITT values are 0, 2, 6 (2 + 4), 18 (2 + 16) and 126 (2 + 4 + 8 + 16 + 32 + 64).

0    Forward data whenever a packet is full.
1    Any alphanumeric character (from A to Z, a to z, or 0 to 9).
2    CR
4    ESC, BEL, ENQ, ACK
8    DEL, CAN, DC2
16   ETX, EOT
32   HT, LF, VT, FF
64   Any control character not given previously.

A.4 Parameter 4 (TIMEOUT)

Default=0 (No timeout).

This parameter specifies the Timeout value for forwarding data.

0    No timeout.
1 to 255 Timeout value in units of 1/20 second.

Note that if parameter 15 (EDIT) is set to 1, timeouts are disabled.
A.5 Parameter 5 (HOSTSYNC)

Default set by the HOSTSYNC terminal characteristic.

This parameter specifies whether the PAD sends XON and XOFF control characters to the X.29 terminal in data-transfer mode. The host-based PAD treats parameter values 1 and 2 in the same way. Specify one of the following values:

0  No device control.
1  XON/XOFF device control in data-transfer mode.
2  XON/XOFF device control in both command mode and data-transfer mode.

A.6 Parameter 6 (MESSAGES)

Default=5 (1 + 4).

This parameter specifies whether messages from the PAD are sent to the X.29 terminal. Permitted values are any combination of the following:

0  PAD messages suppressed.
1  PAD messages transmitted.
4  (In command mode) PAD prompt transmitted.
8  PAD messages in nonstandard format. This value is ignored by the host-based PAD.

A.7 Parameter 7 (BREAK)

Default=21 (1 + 4 + 16).

This parameter specifies the actions taken by the PAD when you enter a PAD BREAK command or type the BREAK_CHARACTER. (The OpenVMS Terminal Driver does not recognize break, and so the host-based command PAD BREAK is used to simulate the Break action.) Supported values are any combination of the following:

0  No action.
1  PAD sends an Interrupt to the remote DTE.
2  PAD sends a Reset to the remote DTE.
4  PAD sends Indication–of–break to the remote DTE.
8  PAD enters command mode.
16  PAD discards output to the terminal. This setting automatically sets PAD Parameter 8 (DISCARD) to value 1 (discard data from remote DTE).

A.8 Parameter 8 (DISCARD_OUTPUT)

Default=0 (Normal data delivery).

This parameter specifies whether the PAD sends output from NV to the X.29 terminal.

This performs a similar function to Ctrl/O, but whereas Ctrl/O requests NV to discard all output to the PAD, this parameter, if set, requests the PAD to discard the output received from NV. Therefore, for reasons of efficiency and cost, Ctrl/O is preferred.
PAD Parameters
A.8 Parameter 8 (DISCARD_OUTPUT)

Specify one of the following values:

0  Normal data delivery.
1  Discard data from remote DTE.

A.9 Parameter 9 (CRFILL)

Default set by the CRFILL terminal characteristic.

This parameter specifies the number of padding characters that will be inserted after a [Return]. Supported values are:

0  No padding.
1 to 255  Number of padding characters to send after a [Return].

Note that the host–based PAD never sends more than nine padding characters.

A.10 Parameter 10 (WRAP)

Default set by the WRAP terminal characteristic and terminal width.

This parameter specifies the character position on a line, at which the PAD inserts a [Return]. For example, setting a value of 80 requests the PAD to insert a [Return] after the 80th character, and continue the text that follows on a new line.

This parameter corresponds to the /WRAP and /WIDTH characteristics of the terminal. Set this parameter to 0 for correct operation of X.29 terminals on OpenVMS.

Otherwise, specify one of the following values:

0  No wraparound.
1 to 255  Specifies the maximum line length that the PAD will print or echo.

A.11 Parameter 11 (SPEED)

Default set by terminal speed.

This is a read–only parameter. The setting corresponds to the /SPEED characteristic of the terminal. Do not attempt to set this parameter.

The parameter takes the following values:

<table>
<thead>
<tr>
<th>Speed (bits/s)</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>134.5</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
</tr>
</tbody>
</table>
A.11 Parameter 11 (SPEED)

<table>
<thead>
<tr>
<th>Speed (bits/s)</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
</tr>
<tr>
<td>75/1200</td>
<td>11</td>
</tr>
<tr>
<td>1800</td>
<td>7</td>
</tr>
<tr>
<td>2400</td>
<td>12</td>
</tr>
<tr>
<td>4800</td>
<td>13</td>
</tr>
<tr>
<td>9600</td>
<td>14</td>
</tr>
<tr>
<td>19200</td>
<td>15</td>
</tr>
<tr>
<td>48000</td>
<td>16</td>
</tr>
<tr>
<td>56000</td>
<td>17</td>
</tr>
<tr>
<td>64000</td>
<td>18</td>
</tr>
</tbody>
</table>

A.12 Parameter 12 (TTSYNC)

Default set by the TTSYNC terminal characteristic.

This parameter specifies whether the PAD responds to XON and XOFF control characters sent from the X.29 terminal. Specify one of the following values:

0 No flow control.

1 Flow control on: the PAD responds to XON and XOFF control characters from the terminal.

A.13 Parameter 13 (NEW_LINE)

Default=0 (No LF inserted after Return).

This parameter specifies whether the PAD sends a LF with every Return received from the X.29 terminal for transmission to the remote DTE or received from the remote DTE for forwarding to the X.29 terminal.

Set this parameter to 0 for correct operation of X.29 terminals on OpenVMS.

Otherwise specify one, or a combination, of the following values:

0 No LF inserted after CR.

1 LF inserted after every CR that is transmitted as data to the terminal.

2 LF inserted after every CR that is received as data from the terminal.

4 LF inserted after every CR that is echoed as data to the terminal.
A.14 Parameter 14 (LFFILL)

Default set by the LFFILL terminal characteristic.

This parameter specifies the number of padding characters the PAD sends after a \[LF\]. Supported values are:

0 No padding.
1 to 255 Number of padding characters to send after a \[Return\].

Note that the host–based PAD never sends more than nine padding characters.

A.15 Parameter 15 (EDIT)

Default=1 (Editing is permitted).

This parameter controls whether the PAD performs local editing when in data–transfer mode.

You should set this parameter only when the terminal is set to /LOCAL_ECHO. Specify one of the following values:

0 No local editing in data–transfer mode.
1 Editing dependent on PAD parameters 16, 17, 18. This setting suspends the Timeout value until editing is turned off at the terminal.

A.16 Parameter 16 (DELETE)

Default=127 (\[DEL\]).

This parameter specifies the ASCII character that the PAD uses as the Delete character. This parameter is ignored unless Parameter 15 is set. Specify one of the following values:

0 No Delete character allowed.
1 to 127 ASCII character code to be used for delete.

A.17 Parameter 17 (LINE_DELETE)

Default=21 (\[CtrlU\]).

This parameter specifies the ASCII character that the PAD uses as the Line–Delete character. This parameter is ignored unless Parameter 15 is set. Specify one of the following values:

0 No Line–Delete character allowed.
1 to 127 ASCII character code to be used for Line–Delete character.
A.18 Parameter 18 (REDISPLAY_LINE)

Default=18 (CnR).

This parameter specifies the ASCII character that the PAD uses as the Line–Redisplay character. This parameter is ignored unless Parameter 15 is set. Specify one of the following values:

0 No Line–Redisplay character allowed.
1 to 127 ASCII character code to be used for Line–Redisplay character.

A.19 Parameter 19 (DISPLAY_EDIT)

Default set by the /HARDCOPY terminal characteristic.

This parameter controls the type of line editing display, as follows:

0 No display for PAD editing.
1 Hardcopy type.
2 Video terminal type.
8, 32 to 126 ASCII character used to display editing.

Note that this parameter is not used if parameter 6 (MESSAGES) = 0.

A.20 Parameter 20 (RESTRICT_ECHO)

Default=254 (2 + 4 + 8 + 16 + 32 + 64 + 128).

This parameter specifies which characters are not echoed. Permitted values are any combination of the following:

0 All characters echoed.
1 CR
2 LF
4 VT, FF
8 BEL, BS
16 ESC, ENQ
32 ACK, NAK, STX, SOH, DLE, DC3, DC4, DC5
64 The editing characters (as set by DELETE, LINE_DELETE, REDISPLAY_LINE).
128 DEL, and all other control characters not listed above.

A.21 Parameter 21 (PARITY)

Default=0 (No parity).

This parameter controls parity generation and verification. Legal values are any combination of the following:

0 None.
1 Parity checking (ignored by the host–based PAD).
2 Parity generation (ignored by the host–based PAD).
A.22 Parameter 22 (PAGE_WAIT)

Default=0 (Page wait is disabled).

This parameter controls whether the PAD holds the display at the end of each page. Specify one of the following values:

- 0  Page wait disabled.
- 1 to 255  Number of lines to display before waiting.
The host–based PAD supports the 22 parameters defined by the CCITT X.3 Recommendation (1984).

The values of the parameters for the PAD initial profile are shown in Table B–1.

### Table B–1 Host–Based PAD Initial Profile

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ESCAPE_CHARACTER</td>
<td>1 (Ctrl/P)</td>
</tr>
<tr>
<td>2</td>
<td>ECHO</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>FORWARDING_CHARACTERS</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>TIMEOUT</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HOSTSYNC</td>
<td>Set by HOSTSYNC characteristic</td>
</tr>
<tr>
<td>6</td>
<td>MESSAGES</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>BREAK</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>DISCARD_OUTPUT</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>CRFILL</td>
<td>Set by CRFILL characteristic</td>
</tr>
<tr>
<td>10</td>
<td>WRAP</td>
<td>Set by WRAP characteristic and terminal width</td>
</tr>
<tr>
<td>11</td>
<td>SPEED</td>
<td>Set by terminal speed</td>
</tr>
<tr>
<td>12</td>
<td>TTSYNC</td>
<td>Set by TTSYNC characteristic</td>
</tr>
<tr>
<td>13</td>
<td>NEW_LINE</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>LFFILL</td>
<td>Set by LFFILL characteristic</td>
</tr>
<tr>
<td>15</td>
<td>EDIT</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>DELETE</td>
<td>127 (Delete character)</td>
</tr>
<tr>
<td>17</td>
<td>LINE_DELETE</td>
<td>21 (Ctrl/U)</td>
</tr>
<tr>
<td>18</td>
<td>REDISPLAY_LINE</td>
<td>18 (Ctrl/R)</td>
</tr>
<tr>
<td>19</td>
<td>DISPLAY_EDIT</td>
<td>Set by HARDCOPY characteristic</td>
</tr>
<tr>
<td>20</td>
<td>RESTRICT_ECHO</td>
<td>254</td>
</tr>
<tr>
<td>21</td>
<td>PARITY</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>PAGE_WAIT</td>
<td>0</td>
</tr>
</tbody>
</table>
Index

A

A (attach) command
CCITT mode PAD, 6–2
@ (ampersand) command
for host–based PAD, 5–6
Attaching to a process
from the host–based PAD, 5–4

B

Batch jobs
including SET HOST/X29, 3–2
BREAK
PAD parameter, 10–2
parameter description, A–3
template default, 8–4
Break action for PAD, A–3
Break character
changing during a SET HOST/X29 session, 5–9
setting for a SET HOST/X29 session, 4–3
Break messages
changing the X.29 terminal’s response, 7–3 to
7–4
Break signal
sending to the PAD in CCITT mode, 6–3

C

Calls
 clearing from a host–based PAD, 5–2
 clearing from a host–based PAD in CCITT
 mode, 6–3
Call statistics
 controlling the display, 4–4
CCITT mode PAD
 changing the host–based PAD characteristics, 6–4
 checking if free, 6–2
 clearing a call, 6–3
 connecting to a remote DTE from the
 host–based PAD, 6–2
 connecting to a remote DTE from the local DTE,
 6–1 to 6–2
 controlling a host–based PAD session, 6–2 to
 6–4
 displaying the characteristics, 6–4

CCITT mode PAD (cont’d)
 entering PAD command mode from the local
 DTE, 6–2
 entering PAD command mode from the remote
 DTE, 6–2
 putting data in the call request packet, 6–3
 resetting the virtual circuit between the PAD
 and the remote DTE, 6–3
 sending a Break signal, 6–3
 sending an Interrupt to the remote DTE, 6–3
 using the host–based PAD, 6–1 to 6–4

CCITT mode PAD commands
A (attach), 6–2
BREAK, 6–3
CLR, 6–3
EXIT, 6–2
INT, 6–3
PAR?, 6–4
RESET, 6–3
SET, 6–4
STAT, 6–2
U (user data), 6–3
Changing characteristics of the host–based PAD,
5–1 to 5–17
Changing individual PAD parameters, 5–7
for host–based PAD in CCITT mode, 6–4
Changing network–specific PAD parameters, 7–2
Changing PAD parameters, 5–6 to 5–8
Changing PAD parameter values, 10–1
Changing the Break character, 5–9
Changing the default Escape character, 5–8
Changing the Escape character, 5–8 to 5–9
Changing the hold timer, 10–2
Changing the host–based PAD characteristics,
5–6 to 5–11
for a CCITT mode PAD, 6–4
summary of commands, 5–15
Changing the operation of the NV device, 10–1
Changing X.29 terminal behavior, 7–1 to 7–5
Changing X.29 terminal characteristics, 10–1
 using SET TERMINAL/X29 commands, 8–5,
 10–1
 using the user template command procedure, 8–5
CLEAR command
for the host–based PAD, 5–2
Clearing a call
  from a CCITT mode PAD, 6–3
  from the host–based PAD, 5–2
CLI
  controlling access, 4–4
Closed user group
  connecting to a DTE, 4–5
CLR command
  for CCITT mode PAD, 6–3
Command file
  for host–based PAD subprocess, 5–2
  host–based PAD commands, 5–6
Command language
  controlling access, 4–4
Command language interpreter
  see CLI
Command mode
  entering, 5–2
  entering CCITT mode PAD from local DTE, 6–2
  entering CCITT mode PAD from remote DTE, 6–2
Commands
  PAD, 5–13 to 5–17
  PAD commands used to control a PAD session, 5–13 to 5–14
  SET HOST/X29, 4–7 to 4–9
  SET TERMINAL/X29, 7–1 to 7–4
  SHOW TERMINAL/X29, 7–4, 7–5
Connecting to a remote DTE, 3–1 to 4–9
  example, 3–2
  from the host–based PAD in CCITT mode, 6–2
  through the host–based PAD in CCITT mode, 6–1 to 6–2
Console terminal
  default Escape character, 4–3, 5–8
CONTINUE command
  for host–based PAD, 5–2
Controlling a host–based PAD session, 5–2 to 5–6
  summary of commands, 5–13 to 5–14
  with the host–based PAD in CCITT mode, 6–2 to 6–4
Copying logical names and DCL symbols to a
  host–based PAD subprocess, 5–3
Creating a PAD initialization file, 3–6
Creating a PAD parameter profile, 3–6
CRFILL
  parameter description, A–4
  template default, 8–4
CUG
  see Closed user group

D

Data
  in the call request packet for CCITT mode PAD, 6–3
Data transfer mode
  entering from CCITT mode PAD, 6–2
  entering from the host–based PAD, 5–2
  entering from the local DTE, 3–1
Data–transfer mode
  local editing, A–6
DCL DEFINE command, 9–3
DCL symbols
  copying to a host–based PAD subprocess, 5–3
Default
  terminal characteristics, 8–4
DEFAULT
  template, 8–2
Default Escape character, 4–3, 5–8
  accessing the PAD from a console terminal, 4–3, 5–8
Default X.25 Access template, 2–1, 8–2
DEFINE/KEY command
  for host–based PAD, 5–4 to 5–5
Defining keys
  for a host–based PAD session, 5–4 to 5–5
DELETE
  parameter description, A–6
  template default, 8–4
DELETE/KEY command
  for host–based PAD, 5–5
Delete character for PAD, A–6
Deleting keys defined for a host–based PAD
  session, 5–5
Discarding output from the remote DTE, 5–5
DISCARD_OUTPUT
  parameter description, A–3
  template default, 8–4
Disconnecting from a remote system, 3–2
Displaying informational messages sent to the
  X.29 terminal, 7–4
Displaying the host–based PAD characteristics, 5–11 to 5–12
  command summary, 5–16 to 5–17
  for CCITT mode PAD, 6–4
Displaying the X.29 terminal and PAD
  characteristics, 7–4
Displaying X.29 terminal characteristics, 11–1
DISPLAY_EDIT
  parameter description, A–7
  template default, 8–4
DTE address, 2–3
DTE addresses
  logical names, 1–2
DTE class, 2–3
Index-3
Initialization file
creating for PAD, 3–6
Initial PAD profile
for the host–based PAD, B–1
using to set PAD parameters, 5–7
INT command
for CCITT mode PAD, 6–3
Interrupt
effect on the remote DTE, 5–5
sending from the host–based PAD, 5–5
sending to the remote DTE, 6–3
INTERRUPT command
for host–based PAD, 5–5
Interrupt messages
changing the X.29 terminal’s response, 7–3 to 7–4

K
Keywords
for PAD parameters, A–1 to A–8

L
LFFILL
parameter description, A–6
template default, 8–4
Line–Delete character for PAD, A–6
Line editing display for PAD, A–7
Line feed for PAD, A–5
Line–Redisplay character for PAD, A–7
LINE_DELETE
parameter description, A–6
template default, 8–4
Local facilities
specifying for a SET HOST/X29 call, 4–6
Log files
NETWORK, 3–7, 5–10
specifying, 3–7
TERMINAL, 3–7, 5–10
Logging a host–based PAD session, 5–9
default log file, 5–9
Logging a SET HOST/X29 session, 4–4
default log file, 4–4
Logical names
copying to a host–based PAD subprocess, 5–3
creating, 1–3
for remote destinations, 2–2
for X.25 Mail addresses, 1–2
X.25 Mail, 2–1
Looking at the host–based PAD characteristics, 5–11 to 5–12
command summary, 5–16 to 5–17
for CCITT mode PAD, 6–4
Looking at the X.29 terminal and PAD characteristics, 7–4

M
MAIL
see X.25 Mail
MESSAGES
parameter description, A–3
MESSAGES item code
template default, 8–3
Messages to X.29 terminal, A–3

N
Name
for a host–based PAD subprocess, 5–3
NETWORK log file, 3–7, 5–10
Network–specific PAD parameters
changing and setting, 7–2
NEW_LINE
parameter description, A–5
template default, 8–4
Nonstandard X.29 protocol identifier, 4–6
NV device, 8–1, 8–3, 9–1
action on break, 10–2
action on interrupt, 10–2
changing the operation of, 10–1
clearing a call, 10–2
controlling with PAD parameter templates, 10–1, 10–3
PAD parameters required, 7–2, A–1
purging the receive data buffer, 10–2
sending a reset to the PAD, 10–2
setting up
as a terminal queue, 12–3
for Break messages, 10–3
for Interrupt messages, 10–3
NV unit
see NV device

O
On–line help
for host–based PAD session, 5–2
OpenVMS Mail
mixing with X.25 Mail, 1–2
OpenVMS mode
using the host–based PAD, 4–3, 5–9
OpenVMS terminal driver, 7–3, 10–3

P
Packet size
specifying for a SET HOST/X29 call, 4–5
PAD
attaching to a process from the host–based PAD, 5–4
changing host–based PAD characteristics, 5–1 to 5–17
PAD (cont’d)
changing host–based PAD parameters, 5–6 to 5–8
changing individual host–based PAD parameters, 5–7
changing the host–based PAD characteristics, 5–6 to 5–11
changing the host–based PAD Escape character, 5–8
changing the host–based PAD prompt, 5–10
clearing a call, 5–2
controlling a host–based PAD session, 5–2 to 5–6
creating a subprocess from the host–based PAD, 5–2 to 5–3
defining and deleting keys, 5–4 to 5–5
displaying characteristics, 7–4
displaying the host–based PAD characteristics, 5–11 to 5–12
entering host–based PAD command mode, 5–2
executing a command file, 5–6
host–based PAD in OpenVMS mode, 4–3, 5–9
initial profile for the host–based PAD, B–1
logging a session, 5–9
requesting help for host–based PAD session, 5–2
returning to the remote DTE, 5–2, 6–2
sending a file to a remote DTE, 5–10
sending an Interrupt, 5–5
sending a Reset, 5–6
setting and changing the host–based PAD Break character, 5–9
setting host–based PAD characteristics with SET HOST/X29, 4–1 to 4–4
setting host–based PAD parameters, 4–1 to 4–2
setting individual host–based PAD parameters, 4–1
setting the host–based PAD Break character, 4–3
setting the host–based PAD Escape character, 4–2 to 4–3
turning off logging, 5–10
using PAD parameter profiles, 4–2, 5–7
using SET TERMINAL/X29 command to change parameters, 7–2
using the host–based PAD, 3–1 to 4–9
using the initial PAD profile, 5–7
PAD Break action, A–3
PAD commands (cont’d)
RESET, 5–6
SET BREAK_CHARACTER, 5–9
SET DEFAULT_ESCAPE_CHARACTER, 5–8
SET INPUT, 5–10
SET LOG_FILE, 5–9
SET PARAMETERS, 5–7, 5–8
SHOW, 5–11 to 5–12
SPAWN, 5–2 to 5–3
PAD command summary, 5–13 to 5–17
PAD Delete character, A–6
Padding characters, A–4, A–6
PAD echo, A–2
PAD editing
in data-transfer mode, A–6
PAD Forward character, A–2
PAD initialization file
creating, 3–6
PAD Line–Delete character, A–6
PAD Line editing display, A–7
PAD Line feed, A–5
PAD Line–Redisplay character, A–7
PAD operation, 8–3
host–echo mode, 8–3
local–echo mode, 8–3
on HANGUP, 8–3
PAD parameter keywords, A–1 to A–8
PAD parameter profiles, 3–4 to 3–6
creating, 3–6
example, 3–6
system profile files, 3–6
using, 3–4 to 3–6, 4–2, 5–7
using the initial profile, 5–7
using your own profile file, 3–6
PAD parameters, 8–3, A–1 to A–8
attributes, 9–2
displaying in numeric form, 11–3
displaying with other X.29 terminal characteristics, 11–4
required by the NV device, 7–2, A–1
the user can set, A–1
PAD parameter template
controlling the NV device, 10–1, 10–3
defaults, 8–3
for HANGUP, 8–3
for host–echo mode, 8–3
for local–echo mode, 8–3
SET TERMINAL/X29, 10–3
specifying, 10–3
user template command procedure, 10–4
PAD parameter values
changing, 10–1
PAD SPAWN command
disabling, 4–4
PAD timeout value, A–2
PAD TTSYNC character, A–5
PAGE_WAIT
  parameter description, A–8
template default, 8–4
PARITY
  parameter description, A–7
template default, 8–4
Parity generation and checking, A–7
PMR
  see Security, Poor Man's Routing
Poor Man's Routing
  see Security, Poor Man's Routing
PROFILE command
  specifying the initial PAD profile, 5–7
Profiles
  creating for PAD parameters, 3–6
  for PAD parameters, 3–4 to 3–6
  initial profile for the host–based PAD, B–1
  using, 3–4 to 3–6, 4–2, 5–7
Prompt
  for host–based PAD, 5–10
Protocol identifier
  using a nonstandard, 4–6
PIS\$MAIL_TEMPLATE, 2–1
PIS\$STARTUP.COM, 9–1
PIS\$X29_BREAK, 9–1
PIS\$X29_HANGUP_PARAMETER_TEMPLATE, 9–1
PIS\$X29_HOLD_TIMER, 9–1
PIS\$X29_INTERRUPT, 9–1
PIS\$X29_LOCAL_ECHO_PARAMETER_TEMPLATE, 9–1
PIS\$X29_PARAMETERS, 9–1
PIS\$X29_SYSTEM_TEMPLATE.COM command procedure, 9–4
PIS\$X29_TERMINAL_CHARACTERISTICS, 9–2
PIS\$X29_USER_TEMPLATE.COM, 10–4

RESTRICT_ECHO
  parameter description, A–7
  template default, 8–4
Returning to the remote DTE
  from a PAD session, 5–2, 6–2
Return key
  using after a PAD defined key, 5–5
Reverse charging
  for SET HOST/X29 calls, 4–6

S
Security
  and X.25 Mail, 2–4
  Poor Man's Routing, 2–4
Sending a Break signal to the PAD
  CCITT mode PAD, 6–3
Sending a file
  to a remote DTE from a host–based PAD
  session, 5–10
Sending an Interrupt
  from the host–based PAD, 5–5
  to discard remote DTE output, 5–5
  to the remote DTE from the host–based PAD in
  CCITT mode, 6–3
Sending a Reset to the remote DTE
  CCITT mode PAD, 6–3
Sending user data with a SET HOST/X29 call, 4–5
Sending X.25 Mail, 1–1
SET BREAK_CHARACTER command
  for host–based PAD, 5–9
SET command
  for CCITT mode PAD, 6–4
SET DEFAULT_ESCAPE_CHARACTER command
  for host–based PAD, 5–8
SET HOST/X29 command, 3–1 to 4–9
  connecting to a DTE within a closed user group, 4–5
  controlling display of call statistics, 4–4
  default log file, 4–4
  in batch job, 3–2
  logging a session, 4–4
  requesting a throughput class, 4–6
  sending user data, 4–5
setting connection characteristics, 4–5 to 4–6
setting host–based PAD characteristics, 4–1 to 4–4
setting individual PAD parameters, 4–1
setting PAD parameters, 4–1 to 4–2
setting the Break character, 4–3
setting the Escape character, 4–2 to 4–3
specifying local facilities, 4–6
specifying packet size, 4–5
specifying window size, 4–5
summary of qualifiers, 4–7 to 4–9
using a nonstandard protocol identifier, 4–6
using fast select, 4–5

Index–6
SET HOST/X29 command (cont’d)
  using PAD parameter profiles, 4–2
  using reverse charging, 4–6
  using the host–based PAD in OpenVMS mode, 4–3, 5–9
  using the qualifiers, 4–1 to 4–6

SET INPUT command
  for the host–based PAD, 5–10

SET LOG_FILE command
  for the host–based PAD, 5–9

SET PARAMETERS command
  for host–based PAD, 5–7, 5–8

SET PROFILE command
  for host–based PAD, 5–7

SET TERMINAL/X29 command, 7–1 to 7–5
  changing and setting network–specific PAD parameters, 7–2
  changing PAD parameters, 7–2
  changing standard PAD parameters, 7–2
  summary of qualifiers, 7–4

Setting characteristics of the host–based PAD, 5–1 to 5–17

Setting default X.29 terminal characteristics
  using system logical names, 8–4
  using the system template command procedure, 8–4

Setting individual PAD parameters, 4–1, 5–7, 7–1 to 7–4
  host–based PAD in CCITT mode, 6–4

Setting network–specific PAD parameters, 7–2

Setting PAD parameters, 4–1 to 4–2, 5–6 to 5–8

Setting the Break character, 4–3, 5–9

Setting the default Escape character, 4–3, 5–8

Setting the Escape character, 4–2 to 4–3, 5–8 to 5–9

Setting the host–based PAD characteristics, 5–6 to 5–11
  summary of commands, 5–15

Setting up the NV device
  as a terminal queue, 12–3
  for Break messages, 10–3
  for Interrupt messages, 10–3

SHOW command
  for host–based PAD, 5–11 to 5–12, 5–16 to 5–17

Showing the host–based PAD characteristics, 5–11 to 5–12
  for CCITT mode PAD, 6–4

Showing the X.29 terminal and PAD characteristics, 7–4

SHOW TERMINAL/X29 command, 7–4, 11–1
  /FULL qualifier, 11–1
  /NUMERIC qualifier, 11–1
  summary of qualifiers, 7–5

SPAWN command
  copying logical names and DCL symbols, 5–3
  disabling, 4–4
  executing a command file, 5–2

SPAWN command (cont’d)
  returning to the host–based PAD, 5–3
  subprocess name, 5–3
  writing results to a file, 5–2

SPEED
  parameter description, A–4
  template default, 8–4

Spooling an X.29 terminal, 12–1
  spooling the current terminal, 12–2

STAT command
  for CCITT mode PAD, 6–2

States
  associating with PAD key definitions, 5–4
  retaining for PAD key definitions, 5–4
  specifying for deleting PAD keys, 5–5
  specifying for PAD key definitions, 5–4

Stopping logging
  host–based PAD session, 5–10

Subprocess
  copying logical names and DCL symbols, 5–3
  creating in host–based PAD, 5–2 to 5–3
  executing a command file, 5–2
  returning to the host–based PAD, 5–3
  specifying a name, 5–3
  writing results to a file, 5–2

Symbols
  see DCL symbols

SYSGEN parameters, 9–1
  PAGEDYN, 2–3

T

Templates
  X.25 Mail, 2–1
  X.29, 8–2

TERMINAL log file, 3–7, 5–10

Throughput class for a call packet, 4–6

TIMEOUT
  parameter description, A–2
  template default, 8–3

Timeout value for PAD, A–2

TTSYNC
  parameter description, A–5
  template default, 8–4

TTSYNC character for PAD, A–5

U

U (user data) command
  for CCITT mode PAD, 6–3

User data
  sending with a SET HOST/X29 call, 4–5

User template command procedure
  default, 10–4
  echo, 10–4
  wrap, 10–4
Using PAD parameter profiles, 4–2, 5–7

V

Virtual calls
   clearing from a host–based PAD, 5–2
   clearing from a host–based PAD in CCITT mode, 6–3

W

Window size for a SET HOST/X29 call, 4–5
WRAP
   parameter description, A–4
   template default, 8–4

X

X.25 logical name table, 2–3
X.25 Mail, 1–1
   filters, 2–2
   incoming, 2–3
   introduction, 2–1
   mixing with OpenVMS Mail, 1–2
   outgoing, 2–3
   receiving, 1–1
   sending, 1–1
   system requirements, 1–1
   templates, 2–1
   using logical names, 1–2
X.25 Security
   prevention of PMR, 2–4 to 2–7
X.29
   filter, 8–2
   templates, 8–2
X.29 communications, 8–1
X.29 configuration logical names, 9–1
X.29 connection
   controlling the characteristics, 4–5 to 4–6
X.29 protocol identifier
   nonstandard, 4–6
X.29 terminal
   changing behavior, 7–1 to 7–5
   changing characteristics of, 10–1
   changing response to Interrupt and Break, 7–3 to 7–4
   changing system–wide defaults, 8–4
   connecting to a remote system, 3–1 to 4–9
   displaying characteristics, 7–4
   displaying characteristics of, 11–1
   displaying informational messages, 7–4
   reactions to Break or Interrupt, 7–3
   setting system–wide defaults, 8–4, 9–3, 9–4
   using logical names, 9–3
   using the system template command procedure, 9–4
   setting up as a spooled device, 12–1
   spooling, 8–5

X.29 terminal driver
   see NV device
X25$STARTUP.COM, 9–1
X25$X29_SYSTEM_TEMPLATE.COM
   command procedure, 9–4
   DEFAULT, 9–4
   ECHO, 9–4
   HELP, 9–4
   parameter values, 9–4
   WRAP, 9–4
X25$X29_USER_TEMPLATE.COM, 10–4
X25_MAIL filter, 2–2
X29 filter, 8–2
X29Login template, 3–2, 4–4
X29_LOGIN filter, 8–2
XOFF, A–3, A–5
XON, A–3, A–5